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SUMMARY

Developing a modular system that properly supports a range of security models is
challenging. The work presented here details our experiences with the modular Linux
security framework called Linux Security Modules, or LSMs. Throughout our experiences
we discovered that the developers of the LSM framework made certain tradeoffs for speed
and simplicity during implementation, consequently leaving the framework incomplete.
Our experiences show at which points the theory of the LSM differs from reality, and
details how these differences play out when developing and using a custom LSM.
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1. INTRODUCTION

Modularity is a “virtue” in software engineering. Using a system that was designed with
modularity in mind benefits [6] both the users and the administrators. A modular system is
capable of being modified dynamically via swappable modules without changing the underlying
code or structure of the system. However, modularity is extremely difficult to get absolutely
right. There are numerous traps and pitfalls that a modular system can be susceptible to,
depending on its implementation. Yet, the end benefit of modularity, “plug and play”, is still
a desired property that keeps such systems around.

Linux Security Modules, LSMs, are an example of software modularity. LSMs seek to supply
a modular design for security in the Linux kernel. Linux Security Modules can be loaded at
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runtime, dynamically, or can be statically compiled into the kernel. With the recent releases of
the Linux kernel, 2.6.24 and later, the LSM interface has been made static, thus eliminating the
dynamic modular nature of LSMs for the foreseeable future. However, the discussion points
presented in this paper still apply to the LSM framework whether allowing modules to be
compiled into the kernel, statically, or loaded during run-time, dynamically.

LSMs provide a modular interface with which different security models can exist in the
kernel or be swapped out for other models. Loaded modules utilize the LSM framework via
“hooks” placed in the kernel’s system calls. These hooks allow a security module to validate
an action and further disallow it if it violates system policy.

Recently, we utilized the LSM framework to develop a security module for our project called
Lockdown [1,10], which is presented as a case study in this paper. Lockdown provides full local
context’, see Figure 1 enforcement and monitoring of the network activities for an end-user on
an enterprise network. The LSM framework was chosen for Lockdown because of the unique
view a kernel loadable module has of the network activity produced by an application that
other solutions are not as capable of achieving.

However, the LSM framework is not without problems, which were encountered during the
development of Lockdown. The first issue deals with Linux Security Module stacking (layering);
how it is described versus how it is actually accomplished. We ran into several problems when
using multiple LSMs on the same system. While being a supported feature of the framework
we discuss why theory differs from reality here. The second issue involves the location of the
LSM hooks within the Linuz kernel source code and where certain hooks should be relocated.
The location of a security hook is very important as it needs to be placed before any important
decisions on the system have been made. However, the hook also needs to be located where the
entire context needed to make a decision on that hook is available. The third and final issue
involves appropriate error messages when using LSMs and additionally how to recover/respond
to denied system calls based on the error codes that are returned.

Based on our experience with the aforementioned problems, we propose several solutions
and discuss what lessons can be learned from them in regards to designing and using a
modular security framework. The general lessons that can be learned are summarized in three
points. First, the design of the security hooks in such a modular system should be consistent
throughout the entire design. A few of the hooks in the framework do not catch or act upon
the error codes that are returned which is in contrast to the semantics of the majority of the
hooks. Secondly, in theory, providing the ability to do a task, such as module stacking and
enforcing how it should be done are very different things. While module stacking is available
in the LSM framework, it is up to the designer of an LSM module to implement support
to allow for additional modules to stack against it. Critically, this needs to be moved into
the kernel so that an LSM is not reliant on any other LSM. Finally, being able to convey to
the end-user, administrator, and developers easy to understand and intuitive error messaging
and additionally handling these “errors” gracefully should be a desirable goal for all software
engineers. Throughout the work it was difficult to determine at times if the reason for a

fLocal context is defined as the who and what (user/application) of a connection, whereas traditional firewalls
are only concerned with the where (IP Address/Port numbers)
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Traditional: NetFlows (showing Where)

IP: 129.74.255.1 IP: 129.74.255.2:80
Port: 8888 Port: 80

Host, User, Application: Where and Why

User: ablaich User: root

App: firefox-3.0.6 App: apache

Host: 129.74.255.1:8888 Host: 129.74.255.1:80

Figure 1. What is local-context?

problem was due to a policy violation in an LSM or something much worse. Through the use
of coherent and useful error messaging, the cause of a denied action can be narrowed down
quickly when typical error messaging is used.

2. Case Study: Lockdown

The administrator of an enterprise network has a responsibility to enforce corporate policies
on the network. Yet, traditional security mechanisms have problems enforcing the intended
policies. The problem with enforcing policy has been due to the prevalence of tools that
have trouble mapping corporate policy to the available enforcement mechanisms. However,
these tools have been easier to manage than more complicated mechanisms, which explains
their continued usage. While advanced solutions do exist, e.g. SELinuz, that have strong
enforcement, they are significantly harder to manage. To this end, we developed Lockdown,
a policy-oriented security approach that builds on the concept of local context to deliver a
lighter weight approach to enterprise network security while striking a balance between the
level of enforcement and level of management available to the network administrator.
Typical tools, such as firewalls that rely on rule sets constructed from IP addresses and port
numbers, typically infer application usage via the port number. The tradition of using such
tools has lead administrators to develop a fuzzy picture of what is occurring on their network,
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since application usage is inferred. This inference leads to poorly enforced policy controls, since
many different applications can use the same port number. Thus, extra information is needed
in order to tighten up the enforcement and gain a clearer picture of the network.

Lockdown is made up of several components that include one for: monitoring, enforcing,
auditing, analysis and visualization. The monitoring component runs on each workstation
and observes network activity such as the application and its path, pid, gid, uid, source and
destination IP address/port, etc. All of the observed data by the monitoring component is
logged and sent to a central database for analysis. The enforcing component, built as an
LSM, enforces policy that has been infused with local-context on the host. Using the hooks
provided by the LSM interface, portions of the policy are validated against the context of
an application trying to achieve network connectivity through kernel level socket system calls.
The auditing, analysis and visualization components are involved in validating the effectiveness
of current corporate policy on the workstations under the control of Lockdown. Additionally,
these components provide in-depth details to the administrators on what is actually occurring
on their network.

With Lockdown policy can be tied to specific usage scenarios and tightly enforced. Figure
1 demonstrates the power of utilizing local context when creating and enforcing policy /rules
over a system that does not, such as traditional firewalls like iptables.

An example policy is the following:

Allow web-browsing to be done to any address with only application Firefoxz version
3.0 that belong to the employees in group Full-Time.

The previous policy is then transformed into a rule set so that it is readable by the computer

and local context enforceable on a host. The translated policy would look like (* indicates for
all):

ALLOW out to ADDRESS * with APP "/usr/bin/firefox-3.0" by GROUP "fulltime";
DENY out to ADDRESS * with APP * by GROUP *.

Essentially, the first rule allows the previously stated policy to occur while the second rule
prevents any other network activity by any other permutations of the local context from
occurring. Like traditional firewalls such as iptables if a rule is not matched then the last entry
in the chain of rules is what dictates the action taken on a connection.

As will be discussed next, the vantage point that an LSM has as opposed to a tool like
iptables enables it to provide a more robust suite of enforcement tools and options. The type
of policy as shown previously is best enforced by an LSM. The three other options that we
considered before developing our LSM included: iptables, system call interposition/trapping,
and SELinuzx.

The first option, iptables, is a user-space application that uses the netfilter [13] Linuz kernel
hooks. Netfilter is a set of callback functions located within the network stack kernel code.
Whenever a packet enters or leaves the network stack, the netfilter hooks are called. While
iptables uses kernel hooks in order to manage network traffic, the detail of the rules used are
only at the level of IP address and port number. Using only the IP address and port number
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for a rule when analyzing a packet is extremely fast since the hooks need to parse every packet
that traverses the network stack and bit-wise operations can be performed against the packet
and the rule, which is must faster than doing a string compare against an application name
or path for every packet. However, the coarseness of the rule set and packet by packet level
of parsing that iptables does lead us to explore other alternatives. For example, observe the
following rule constructed for iptables for the corporate policy of allowing web-browsing:

iptables -A INPUT -p tcp -m tcp —--sport 80 -j ACCEPT
iptables -A OUTPUT -p tcp -m tcp -—-dport 80 -j ACCEPT

Application usage is inferred in the above iptables rule set that only web-browsing will be
done over port number 80. Whereas the equivalent rule in Lockdown is finer grained, since the
application is now taken into account:

ALLOW out to ADDRESS * with APP "/usr/bin/firefox-3.0" via PORT 80

The second option, system call interposition, involves dynamically modifying the system call
table through the use of a kernel module. Whenever a system call is made the call is redirected
to the module that is claiming responsibility for it and in turn executes the corresponding code.
This method was essentially overkill for our needs. Rewriting entire portions of system call
code in order to trap the network socket operations occurring in the system calls is tricky since
the code base for Linuz is in constant flux and changes made for either security or performance
in a newer kernel version may not be reflected in our module as quickly. The traps and pitfalls
of system call interposition are detailed in [4].

The third option, SELinuz, is the NSA’s (National Security Agency) answer to a secure
version of Linuz [7,18]. SELinuz is robust and feature rich, but the policy files/modules are
tricky to write [12] and manage. The commonly found LSMs, which include: AppArmor [14],
Smack [17], and Tomoyo [3]; help to show that SELinuz may be very robust, but portions of
the feature set are improved on by other groups to allow for wider adoption of robust security
solutions and methods in the modern operating system. As shown in [9] when comparing
and contrasting AppArmor versus SELinuz, SELinux is typically not favored due to its
poor usability making it difficult to manage. The complexity of SELinux is further seen in
a comparison to Multics [2]. Multics was designed originally with security in mind , while
current operating systems have security grafted on. In [8], the authors discuss how the original
Multics kernel was only 628KB in size, whereas in comparison the sample SELinux policy (not
including the linux kernel) is approximately 1767KB, 2.5 times bigger. The difficult nature
required in adding security to modern operating systems outside of the original design results
in the increased size and complexity of such systems as they exist today.

Additional downsides with using SELinux include the use of labels instead of pathnames for
applications. While the SELinux model of using labels that are “stored as extended attributes
for filesystem objects” is considered more secure since references are made to the actual
filesystem objects. However, labeling/relabeling of a filesystem takes time and is not intuitive
when auditing the log files on a system. To this end we chose to develop our own LSM since
the main goal of Lockdown is to provide a manageable, usable, and intuitive security solution.
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Figure 2. The Lockdown LSM Enforcement module

Additionally, since the majority of the this work relies on the intuitive auditing and logging of
data a label based approach to application security was not chosen.*

3. Linux Security Modules

Before we get into the underpinnings of the LSM, it would help for a brief history lesson on
where Linux Security Modules came from. The framework for LSMs was initially proposed and
developed by Cowan and Wright [19,20,21]. The goal of the LSM framework was to provide
sufficient hooks into the Linuz kernel to allow a module to provide for a method of access
control; while also keeping changes to the kernel minimal. The need for this method of access
control is fueled by comments made by Linus Torvalds [11], creator of Linux, that an ultimate
security standard does not exist. Essentially, since measuring security is still very subjective

fThe debate of labels versus pathnames for application security continues to be waged on the Linux kernel
mailing list as well as security forums.
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and not quantitative, it is hard to judge how much “more” secure one security model is from
another. So, rather than having one security model rule the kernel, it would be better if the
kernel did not have to rely on any single hardcoded standard.

Now that we know where LSMs came from, how exactly do they work? The first thing to
discuss is how are LSMs loaded and what happens during the loading phase. LSMs are inserted
into and removed from the kernel via the standard insmod, rmmod, and modprobe utilities.
When an LSM is first inserted, it needs to check whether it can be loaded or not. The LSM
interface provides functions which allow a module to register into one of two available slots.
The main interface slot that a module can register with is called the primary module and the
alternative slot is called thesecondary module. A module that is attempting to load into the
kernel as an LSM needs to first check the primary slot for any other previously loaded LSMs;
if none are found then the module can load. However, if the primary slot is occupied then the
secondary slot needs to be checked before being loaded. If the secondary slot is free, then the
module will load into there. However, the secondary slot represents a module registering with
the primary module, because the kernel can only in reality handle one security module, this is
explained later in the module stacking section. It is the job of the primary module to handle
any secondary module.

An overview of the LSM architecture between user space and kernel space as it pertains
to Lockdown can be found in Figure 2. If a LSM needs to communicate with user-space
(since modules are loaded into kernel space), such as having to read in policy files or output
statistics there are a few ways to accomplish this. The method which we used was to create
several special files (/dev/filename) that a user space application is able to write data to and
read data from; depending on the permissions. These “devices” serve as transports between
user space and kernel space. The initialization of these “devices” is done during the setup
phase of the module.’

Once a LSM is inserted properly, the descriptor table is loaded that tells the kernel which
LSM hooks the current module is providing functions for. The LSM hooks exist as upcalls
to a loaded module in the kernel that has designated itself responsible for handling all or a
sub-set of the available hooks. The hooks are scattered throughout the common system calls
that exist in the kernel which are responsible for a range of tasks including: program execution,
filesystem, inodes, tasks, files, netlink, unix domain networking, sockets, key management, and
System V operations. Any pertinent structures or variables that are necessary for making a
decision for a particular LSM hook are passed into the hook, like a function call, and the
module that implements the hook has access to them when it gets called. For example, the
socket_create hook as found in the sock_create system call is shown below (LSM hooks are
preceded by security_in the kernel source, but not in the actual LSM code):

err = security_socket create(family, type, protocol, kern);
if (err)

8The setup and creation of devices can be found in Linux Kernel Module documentation pertaining to device
drivers [16].
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return err;

Once a hook is called in the kernel source, the module designated to handle that hook is
called and the corresponding code is executed in the appropriate LSM. If the LSM wishes to
prevent the system from proceeding, it returns a non-zero error code. LSM hooks can typically
only further deny actions that have not yet been denied by the kernel itself. However, there
is some support for authoritative hooks, where a previously denied action can be allowed, but
these are “limited to the extent that the kernel consults the POSIX.1e capable() function” as
stated in [20].

For a better idea of how the LSM hooks work, consider the following example. Assume we
have loaded an LSM onto our machine that implements the LSM hooks for creating a network
socket. Whenever an application attempts to create a socket, our LSM code gets called and
we have a chance of saying whether the socket should be allowed or denied. Assuming we
have a policy in place that says to allow only the application mozilla to create sockets, any
application that attempts to create a socket is validated against our policy in the LSM. As
a sidebar, while getting the name of the process attempting to create a connection is trivial,
current->comm (where current is an instance of the task_struct data structure in the kernel
that indicates the current process), obtaining the full path from which the application is
running from is not. The application path is obtained by walking the vm_area_struct until the
appropriate entry is found in virtual memory, the entry is then fed into the d_path function
which assigns the application path to a c-string that we return to the calling LSM hook.
Walking the vm_area_struct is typically a process you would want to avoid since it is time
consuming, but the path is not stored like the name of the process is in the task_struct. The
reasons for the path name not being stored in the task_struct at the time of execution is
that the currently running process can have its pathname changed since in Linux a process
can be moved around during its lifetime.

If the LSM determines that the application is mozilla then it returns an error code value
of 0, meaning to allow it. However, if the application is not mozilla then our LSM will return
a negative error code value such as -EPERM to indicate that permission was denied for the
socket create operation. The return value is caught by the socket create system call within the
kernel and since the value is less than 0 the system call terminates and the request made by
the application to create a socket will have been denied for the current instance.

Now that we have presented the background information on what LSMs are, where they
came from, and what they are capable of; it is time to discuss the three separate issues that
were discovered during the course of the development of the module for Lockdown.

3.1. Points of Enforcement in the Kernel
8.1.1.  Current Implementation
The first issue we came across dealt with the placement of the LSM security hooks within the

Linux kernel source. Choosing where and when to provide a security hook is at times a non-
trivial task. If too many hooks are used, the system is at risk of being slowed down significantly,
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due to the inherent delay involved with policy checking before allowing or denying a system
call to execute. If too few hooks are used, then the ability to provide a sufficient security
framework is hindered.

Linux has 175 hooks for the LSM interface scattered throughout its 327 system calls. A large
majority of the LSM hooks occur when the functional code of a system call begins to execute.
If a hook is implemented in a currently loaded LSM, program flow is diverted to the block of
code that provides functionality for the hook, which is capable of making a decision to allow
or deny the system call. If the system call is allowed, the LSM returns a 0 and the system call
continues as normal. If however the call is denied, then a negative value error code is returned
from the LSM and the system call terminates execution.

However, not only are the number of hooks important, but also the placement of these hooks
within the body of code for a system call and the nomenclature used to describe them. As
will be discussed momentarily, certain LSM hooks end up providing almost no advantage over
other hooks and essentially have no ability to deny an action due to their placement in the
code. Additionally, the naming of some of the hooks we dealt with were slightly misleading
with what the perceived action was.

3.1.2.  Problems Observed

Our continued work with the LSM brought up some interesting issues with the LSM hooks
and how they are placed throughout the kernel source. While the LSM security hooks are
not available in every system call, they are available in a decent portion to provide for the
development of a fairly robust security solution. Our work mainly concentrated on the hooks
relevant to socket activity for AF_INET (IPv4) and AF_INET6 (IPv6) which can be found in
Table I. The usage of the socket hooks during the communications between a server and client
running Linuz can be found in Figure 3.

The names used for the hooks are relatively straightforward when determining their purpose.
For example, the socket_connect hook, found on the client side, is responsible for security
operations with the connection phase of a client connecting to a server socket. The connect
hook works as expected, if the policy on the client side restricts a socket connection based on
a specific context: then the socket_connect LSM hook simply needs to return a negative error
code value and the connection will not be allowed. Some hooks, however, have a few problems.
With hooks like socket_create and socket_accept, the context of a connection is not known at
the time these hooks are called, which is at the beginning of the corresponding system call.

For our work with validating if a certain socket should be allowed based on the address,
port, application, user, etc (local context) responsible for the socket a decision cannot be
made at the time of these two hooks. However, two other hooks associated with create and
accept called socket_post_create and socket_post_accept occur at the end of the corresponding
system calls, hence the “post” name being used. However, a major problem with these hooks
is that the typical LSM semantics of returning an error code to either validate or invalidate an
action is useless at these points for two reasons. The first reason is that the socket has already
been established. If the local context violates policy, the socket needs to be torn down via the
socket shutdown function call from within the LSM, after it has already been established. The
application that established the socket ends up having the system call return successfully only
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Table I.
LSM Hook Parameters
.socket_create int family, int type, int protocol, int kern
.socket_post_create | struct socket * sock, int family, int type, int protocol, int kern
.socket_bind struct socket * sock, struct sockaddr * address, int addrlen
.socket_connect struct socket * sock, struct sockaddr * address, int addrlen
.socket _listen struct socket * sock, int backlog
.socket_accept struct socket * sock, struct socket * newsock
.socket_post_accept struct socket * sock, struct socket * newsock
.socket_sendmsg struct socket * sock, struct msghdr * msg, int size
.socket_recvimsg struct socket * sock, struct msghdr * msg, int size, int flags

to have the socket not be accessible since it was shutdown via another method. The second
reason is that the error code is not caught by the system call utilizing these LSM security hook.
Despite the context of the socket being known in these “post” calls, the standard method of
returning an error value will not work in these cases; which contrasts with the rest of the LSM
security hooks that have their error code values caught in order to prevent further action by
the executing system call.

The current security operations were meant to be minimally invasive in regard to their
addition to the kernel source. Keeping the hooks minimally invasive within the source code
explains the reasons why the post security operations do not have their return values caught. If
a post security call were to be undone based on the return value, the amount of code required to
switch the state of the system back would increase and would complicate matters for the LSM
framework designers. Keeping the overhead of implementing a security framework minimal,
but still allowing it to be powerful, is however a tough balancing act.

While overall, the points of enforcement for the LSM hooks within the kernel source
are sufficient, the advantage of how post hooks were implemented becomes the greatest
disadvantage in this regard. An LSM designer is required to check an additional hook for
certain system calls, post hooks. These hooks exist for event notification, so for the socket
accept system call the socket_post_accept LSM hook indicates that a socket has been accepted
on the system. Yet, this is the closest spot, in terms of execution path, for which a connecting
socket that violates system policy can be shutdown.

3.1.3.  Solutions

Possible solutions to the problem of having the post hooks (which are only good for auditing
as far as LSM semantics are concerned) are the following: rename the hooks, change the return
type, save state for rollback, or move the hook into the decision part of the system call.

The first two suggestions are essentially cosmetic work. Renaming the hooks to reflect their
true nature, such as socket_post_accept to socket_audit_accept or socket_monitor_accept would
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Figure 3. LSM hooks used for socket connectivity.

be of greater use to an LSM developer. The second suggestion of changing the return type
to “void” is essentially another cosmetic change that would indicate to the developer that a
return code is irrelevant in these situations.

The final two suggestions actually require more thinking on the parts of both the LSM
framework designer as well as the kernel source system call designers. Saving state for rollback
would require maintaining the previous state before the system call is executed and then, based
on the return value from the post hook, either roll the state back or keep things as they are.
The final suggestion of moving the post hook to the decision portion of the system call in order
to ascertain the proper context and make a decision before the action is actually accomplished
in the kernel is the better of the two. Keeping with our work with the socket LSM hooks,
the socket_post_accept hook code should be moved into the portion of code that determines
where a connection is coming from before the socket is established. This sort of modification
requires doing a check in another function than the current system call. So that the context of
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an attempt to create a connection is known before the kernel blindly accepts a connection for
a socket simply because something is listening and waiting to accept connections. While the
last two suggestions may require extra work in their implementations, they would keep the
LSM hook semantics consistent. Whereas, the first two suggestions are simpler to implement,
the semantics of the LSM hooks would still differ for the post hooks.

3.2. Module Stacking
8.2.1.  Current Implementation

The second issue we came across with Linux Security Modules deals with how the stacking
or layering of multiple modules on a single host is accomplished. Why would a user want to
use multiple LSMs? A user may want to use multiple modules, each for a dedicated task, in
order to increase the security of their system.¥. A single security product that attempts to
do to much typically will result in a solution that is poorly configured by administrators due
to the complex nature of the product. Other problems resulting from “do-it-all” solutions is
that they, at times, lack the ability to accomplish a single task any better and, in fact, may be
worse than a solution that is designed for a specific task. Thus, layering is an accepted practice
in the security community, since different groups/companies are more apt at solving certain
types of security issues than others.

The stacking policy of LSMs is first-come first served. As discussed previously, the LSM
interface in the kernel is capable of supporting both a primary module and a secondary module;
where the first security module to load gains control over the primary spot and the next module
to load, in time, is assigned to the secondary spot. While the LSM interface allows for up to
two security modules to be loaded, it does not attempt to manage or police the interface other
than for the primary module. The reason for this is that the kernel allows for the security
operations table to have their hooks pointed to the primary loaded module, it doesn’t allow
the table to redirect to multiple modules. So the primary module is registered with the kernel
via the register_security function, which corresponds to the primary spot. In order to allow
a secondary module there is another registration function call mod_reg_security that lets the
secondary module register with the primary module, if the primary module supports that
feature.

3.2.2.  Problems Observed

To further clarify the stacking interface, the first LSM that is loaded into the kernel wins
and is made the primary module. It is then the responsibility of the primary module to
provide functionality to allow for a secondary module to be loaded into the kernel. The
interaction between the primary module and the secondary module is better observed in the

9IThe traditional approaches of applying security to a system involve a multi-layered defense.
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real world LSM modules of SELinuz and Capabilities|. SELinuz is written to be loaded as the
primary module and Capabilities is required to be the secondary module; SELinuz provides
functionality to Capabilities, but if another module were to take the place of Capabilities it
would not be allowed since SELinux is written to be compatible with only the Capabilities
module.

For any other LSM that may need to be loaded, the primary module needs to be replaced or
re-written in order to interact with a different LSM. We ran into this trouble when attempting
to load our custom LSM onto a Linur Fedora based development system that was pre-
configured with SELinuz by default during the installation.

Essentially, if we wanted to load a module that did security monitoring/logging only, it
would need to stack in with the other LSMs on a system. While some of the commonly found
LSMs explained earlier include their own logging features that could be modified, since the
code is typically open source (the problem is worse when the source is closed), changing how
the logs are produced could break other dependent tools as would be the case with SELinux
and its automatic policy generation and auditing programs.

It would be ideal however to allow for a secondary module to be deployed without having to
rely on the primary module for support. If a primary module chooses not to “play” nicely and
allow a secondary module, administrators are forced to make compromises and tradeoffs with
the sorts of modules they are able to have deployed, as opposed to a true layered/stacking
solution. This seems almost counter to the points made by Linus Torvalds that no single
security solution should rule the kernel [11], but if developers are constantly forced to re-write
already written features, it may in the end result with a single security solution “ruling all”.

3.2.3.  Solution

Now that we know how module stacking is currently done, how should it really be done? With
the current implementation of module stacking for the LSM interface, in order for a custom
LSM to be loaded into the kernel we first had to disable SELinux. While this was not a problem
for our group since we do not have SELinux configured for any sort of enforcement. This may
be a problem for other institutions that do use it and cannot afford to have it disabled.
Solutions have been proposed in the past to tackle the module stacking issue. Some of
the solutions involved research into developing a third-party module that is responsible for
handling the stacking between modules so as to not rely on a primary LSM module to offer
it. This work seemed to have cooled and no longer appears to be maintained [5,15]. However,
allowing a primary LSM module to orchestrate and conduct the flow of security operations
through multiple LSM modules that can be loaded onto a system would be a good approach.
In this way, different paths could be taken through the multiple modules loaded on a system
depending on what kind of security operation is being called. However, having this ability by
default in the Linux kernel its a better fit since the kernel provides the LSM interface.

I Capabilities refers to the LSM module implementation of POSIX Capabilities; which indicate wether an object
or process is “capable” of doing an action based on a set of privilege bits.
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The way in which we propose fixing the issue involves three cases for which the new module
stacking model needs to take into account. What should happen if a secondary module wants
to:

1. reject something accepted
2. accept something rejected
3. log something rejected

The first thing that needs to be done is for the module stacking to be moved into the
kernel from which it is able to handle multiple redirects for the security operations table to
the appropriate security modules. A priority list can be used for each hook where the head
of the list points to the primary module loaded and the tail keeps track of the secondary (or
last loaded module if support is enabled for more than two LSMs). Each list points to the
appropriate module in the order it should be called. With this list if a primary module makes
a decision on whether to allow or deny an action the result is passed down the list through
each module that implements that hook, from head to tail. The module at the tail of the list
for a specific hook then has its result returned to the calling system call.

Each module needs to do a check on the value being passed in from the previous module
in the list to ensure that the result is not changed unless it needs to be. For example with
case number 1, listed above, if the primary module allows the creation of a socket, but there is
also a secondary module the result from the primary is passed into the secondary which then
decides to deny the creation of the socket, so the return value is changed, and since there is
only two modules in this instance the system call ends up being rejected after first having been
accepted. The same is true for case 2 with the reverse action occurring, something that was
accepted is rejected later on. With case 3 it might also be necessary to plug in a custom logging
LSM that simply audits the system. With this redesign in the stacking interface the logging
module can load and observe any activity occurring in the LSM framework by plugging in at
the tail of the lists for each hook and simply passing the result it gets from modules before
it onto the system call without modification. With this method, the logging module acts as a
pass through as it is capable of auditing the activity occurring without having to modify any
of the data passing through it, except for recording it to disk.

3.3. Proper Error Messages and Event Handling
3.3.1.  Current Implementation

The third and final issue we dealt with involves appropriate error messaging and event
handling. Being able to properly notify the user and or application of errors or denied actions
meaningfully is a desired property in any system. Administrators that are attempting to debug
issues with a system have a limited amount of time. By being supplied with appropriate, non-
cryptic error messages, they can debug and solve problems faster. Additionally, there is the
problem of event handling. If an application is expecting a system call to finish, but it fails
due to an LSM being loaded, how does the application recover? Application designers need to
be made aware if an LSM is responsible for denying an action so that a program can terminate
certain actions gracefully, or know not to attempt them.
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As detailed during the LSM hooks section, the majority of the hooks have their error return
values caught. These values are typical of those found when programming in user-space, except
that the values are negative as opposed to positive, but with zero still signifying a successful
action (no error). Developers are encouraged to capture these error codes when using system
calls in order to determine wether an action was successfully completed or not so that their
application does not crash unexpectedly.

3.3.2.  Problems Observed

Error code reporting was very important in the work we did with the LSM. When dealing
with network sockets we wanted the applications a user runs to be notified when a socket
was unable to be created due to a policy violation and that data is not being sent through
the socket. Traditionally, software based firewalls such as IPTables receive packets that are
sent out by a host application. If the packets violate the firewall rules then they are silently
dropped. However, the applications a user uses have no idea that packets are being dropped
and will continue to send them. This behavior will lead to applications either waiting for a
timeout that they themselves set or the application will continue to wait until it crashes or is
killed.

Throughout the use of our LSM, we were stopping the creation of any sockets before packets
were sent. However, if a socket was allowed and then at a point later in time policy changed
during the run of the application, the send and receive socket message hooks (see Table I)
would terminate the socket activity. As a result, the application is instantly made aware of
something occurring, and can terminate any policy violating actions, gracefully, if it is properly
written to check for error codes returned from the system calls.

In Figure 4, we demonstrate the ability and ease for an administrator to further debug a
solution that provides error reporting as to one that simply times out. However, throughout
our experiences with using the LSM hooks and additionally with loading an LSM, it became
clear that more useful error message reporting is needed. For example, in a typical enterprise
network setting, there are numerous types of security solutions, some hardware and some
software, in addition to possible misconfigurations of routers, improper software coding, and
more. It would be ideal if an administrator knew that an application was unable to send data
over the network due to a policy violation of the Linux Security Module loaded on that system
and which LSM was responsible for the denial. This could easily be resolved with additional
error code values that include an “LSM denied action” message, as opposed to a generic
statement informing the application that is was unable to create a socket; while better than a
timeout, it still leaves some mystery as to what the reason for the inability to create a socket
was."*

**By default, Java does not have a timeout value set for sockets.
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Iptables: block all outgoing traffic

File Edit View Terminal Tabs Help

root@ndss-st-mmid: ~/Desktop/j... X |root@ndss-str-mmid:~/Desktop/j... %  root@ndss

[root@ndss-str-mmld java codel# java WebServer

Start time: 12:18: ______

Can't connect to netscale.cse.nd.ethr--- Wait until time-out

java.net.SocketTimeoutException: Connect timed out _~227" .30 seconds
Stop time: 12:18:33 f--------"""""""""7 "
[root@ndss-str-mmld java code]# J

Lockdown: block java WebServer
File Edit View Terminal Tabs Help

root@ndss-str-mmid: ~/Desktopfj... % |root@ndss-str-mmid:~/Desktop/j... X |root@ndss

[root@ndss-str-mmld java code]# java WebServer

Start time: 12:19:44

Can't connect to netscale.cse.nd.edu Instantaneous Feedback
ljava.net.SocketException: java.io.IOException: Operation not permitted
Stop time: 12:19:44

[root@ndss-str-mmld java code]#‘l

Figure 4. The application view of enforcement comparing iptables (above) versus an LSM (Lockdown)
(below)

3.8.3.  Solution

Enabling the LSM framework to report to the application that a socket it was trying to create
or utilize was denied due to an LSM and to further specify which LSM was responsible is the
ideal solution to this problem. The first part can be done by expanding on the linuz/error.h
file to include additional error codes to indicate a denied LSM action. Being able to tell the
application which LSM, if many are loaded, could be a trickier problem, but who is responsible
for doing this depends on if any of the module stacking suggestions are taken into account.
For example a third party module could keep track of denied actions and denote who was
responsible for what, the kernel could keep track of it, or, if no stacking is involved, the
primary module loaded would typically be found to be the culprit since it has the final say in
the current “further deny” LSM semantics.

While the current LSM framework was created by keeping the kernel source code changes
minimal, a simple addition of adding additional error messages as they pertain to security, the
LSM framework can be further enhanced thus empowering both users and administrators. The
users and administrators would have better help in debugging and tracking down the cause of
denied actions. This could be done easily by duplicating the error code values and separating
them by an offset value from their counterparts, such as returning the value: -EPERM+LSM
would translate to a denied permission by an LSM. The original -EPERM error code would
exist, the offset of +LSM would just refer to LSM specific error codes.
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Since many different security modules, programs, daemons, etc may be running at any single
instant on a system, it is at times difficult to debug the root cause of a problem if you are
unfamiliar with what is currently running and, even if you are familiar, it may still be difficult.
In the case of setting up a network socket, the socket connection could fail for many reasons: a
server denies the connection; a hardware or software based security solution on or off the host
system denies the connection; the application developer has a bug in his code; the network
configuration on the host system is not configured properly; etc. Trying to track the cause of
a problem down to any single one of these reasons is difficult, thus providing a way to narrow
it to a specific portion of the system is beneficial for the end-user.

4. Conclusion

Throughout the course of this paper, we discussed our experiences with the Linux Security
Module framework. We posit that modularity is beneficial for complex systems, but is difficult
to get absolutely right. The three problems presented in this paper about the LSM framework
highlight the difficult nature of modularity as it pertains to security. However, as all systems
and software evolve over time, the lessons learned from the experiences presented here can
further evolve the LSM framework to enhance its robustness.

The lessons learned during the development of our LSM were the following: First, the security
hooks interface should be consistent for all hooks in regard to having the ability to return an
error code in order to dictate how a particular action is handled by the kernel. The post hooks,
as discovered, are in a better position of making an informed decision on an action than their
non-post counterparts. These hooks, however, do not follow the semantics of normal LSM
hooks isince the error code returned is not checked and acted upon. The solutions presented
here attempt to solve the problem via a renaming or a relocation of the hooks in the kernel
source so that they can deny an action rather than only serve as auditors. Second, the LSM
interface, while in theory provides for module stacking to occur, leaves it up to the module
developer to provide the functionality. A module developer becomes reliant on other LSM
module designers to allow for stacking, whereas an LSM developer should instead have to
depend on the kernel to provide such a feature since it provides the interface. The solutions
proposed enable a chain of modules to be loaded where each LSM can handle a different task.
A custom logging LSMs could thus be plugged into a chain of security enforcing LSMs without
altering the security of the system. Third, and finally, relaying appropriate error messages back
to the developers, users, and administrators of a system so that they are made aware as to
why certain actions were denied because of an LSM policy violation needs to be added into the
framework. While the current iterations are an improvement over an IPTables implementation
of denying data across a network socket, more intuitive error messaging can still be put into
place to ease debugging and frustration by all of those involved.

From the experiences presented it can be further ingrained in the software engineering
community that modularity is a great idea, but it is still hard to achieve a perfect system.
There are lots of tradeoffs made when designing a modular system, such as keeping the modular
interface code simple; providing enough “power” to the modular interface so as to not hinder
its ability; and maintaining proper semantics through the entire design process. While not all
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of these may be 100% achievable it helps to balance all aspects of the design to essentially give
users of the modularity, wether developer or end-user, the best possible experience.
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