Shepherd: Seamless Integration of Service
Workflows into Task-Based Workflows through
Log Monitoring

Md Saiful Islam
University of Notre Dame
Notre Dame, IN, USA

mislam5 @nd.edu

Abstract—Traditional workflow managers focus on coordinat-
ing discrete tasks: actions that run to completion. However,
emerging workflows require persistent services that must be
managed alongside traditional tasks. We introduce Shepherd, a
local workflow manager that runs services as a task, enabling
them to be seamlessly integrated into larger distributed work-
flows. By inferring service states through log outputs and file
creations, Shepherd enables the coordinated startup and shut-
down of dependent services without modifying their original code.
We demonstrate Shepherd’s effectiveness in large-scale drone
simulations, where it enhances workflow flexibility, reliability,
and comprehensive logging and visualization.

Index Terms—Workflow Management, Service Orchestration

I. INTRODUCTION

Workflow management is the coordinated execution of a
series of tasks, often in a predefined order [1]-[4]. This
concept is crucial for scientific research and many other fields
where complex processes need to be managed efficiently [2],
[5l. Traditional workflow managers are often data-centric,
focusing on the movement and transformation of data between
tasks, with task dependencies based on completion, where a
dependent task can start only after the preceding task has
returned an exit status [3]], [4], [|6], [7]. They excel at handling
clear task dependencies, ensuring data consistency, and au-
tomating data processing pipelines [4], [7], [8]. However, this
model is not well-suited for applications that require persistent
services as part of a traditional task-based workflow.

For instance, consider a scenario where a web server should
start only after the database service has completed its initial-
ization and is ready to handle queries. The database does not
perform a single action that completes; instead, it reaches an
internal state that should dynamically trigger the launch of the
web server. This highlights the need for workflow management
that can accommodate such state-based dependencies.

Managing workflows with persistent services presents the
additional challenge of ensuring a graceful shutdown. Unlike
actions that terminate upon completion, services must be
carefully terminated to prevent data loss and ensure system
stability. This involves stopping the service itself, any sub-
processes it may have started, and cleaning up temporary
files. Failing to do so can cause resource leaks and instability,

Douglas Thain
University of Notre Dame
Notre Dame, IN, USA

dthain@nd.edu

hindering reliability and efficiency. Coordinated startup and
graceful shutdown allow services to integrate seamlessly into
workflows, just like any other self-completing tasks.

To overcome these challenges, a workflow manager must
track the internal states of services. This allows it to know
when they have completed initialization or reached states
that other processes depend on. Tracking these states without
making code changes presents a significant challenge, espe-
cially if the services lack a dedicated API for this purpose.
However, many modern applications extensively log their
actions and execution status, providing an opportunity to infer
the dynamic states of the application through log analysis.
Similarly, monitoring files produced by services can help infer
their states, which can then trigger the start or termination of
other actions or services in the workflow.

Shepherd is a workflow manager that puts these concepts
into practice. By monitoring standard output and specified
files, Shepherd infers application states. This enables Shep-
herd to effectively manage workflows that include persistent
services. For example, in the database and web server scenario,
Shepherd monitors the database service’s logs for a mes-
sage indicating successful startup. Upon detecting this state,
Shepherd triggers the initiation of the web server, ensuring
efficient workflow execution. This state-based dependency
management and state inference empowers Shepherd to handle
complex service workflows without requiring code modifica-
tions. Moreover, Shepherd wraps the entire service workflow
into a single task that terminates upon completion, making it
easy to integrate into larger task-based workflows.

In this paper, we present the architecture of Shepherd,
focusing on its novel method for integrating service workflows
into task-based environments. We demonstrate Shepherd’s ca-
pabilities through large-scale drone simulations, where it effec-
tively manages dependencies and coordinates the startup and
shutdown of services. Additionally, we show how Shepherd
simplifies integration testing, a process often challenging with
traditional bash scripts. By integrating services into traditional
task-based workflows, Shepherd enhances workflow efficiency,
reliability, and ease of management.

II. SERVICE WORKFLOWS

Service workflows involve coordinating services that per-
sist throughout the workflow’s lifecycle and require dynamic
state management. These workflows present unique challenges
and opportunities, particularly in environments where service
dependencies and state transitions are crucial.

a) Defining Service Workflows: A service workflow is
a type of workflow that integrates both actions that terminate
upon completion and persistent services into a unified execu-
tion plan. Services are processes that continue running until
explicitly stopped, maintaining an operational state throughout
the workflow. Examples include web servers, databases, and
simulation engines.

b) Challenges of Service Workflows: Service workflows
present several unique challenges compared to traditional task-
based workflows:

o Complex Dependency Management: Services often de-
pend on specific internal states of other services before
they can start. For example, in a drone simulation, a
physics engine must be ready before the drone autopilot
can spawn a new model. This requires coordination based
on internal states rather than task completion, necessitat-
ing more sophisticated management.

o Graceful Shutdown: Unlike actions that terminate upon
completion, services require controlled shutdown pro-
cesses to prevent data loss and ensure system stability.
This involves stopping the service, terminating subpro-
cesses, and cleaning up resources.

o Indirect State Tracking: Many services lack explicit
interfaces for external monitoring of their internal states.
This makes it difficult for workflow managers to deter-
mine when a service is ready, has successfully completed
a task, or is experiencing errors.

c) Shepherd’s Approach: Shepherd addresses these
challenges by treating services as first-class citizens within the
workflow. It introduces the concept of services as a task, where
one instance of Shepherd itself constitutes a task. A service
workflow is thereby encapsulated to function as a single task
that can be seamlessly integrated into a task-based workflow.
Shepherd services require specific attributes that differentiate
them from regular services:

« Start Conditions: These conditions specify the states of
other services or actions that must be satisfied before the
service task can start.

« Stop Conditions: These conditions trigger the graceful
shutdown of the service task when met.

o Well-Defined Internal States: Services must define
states that can be tracked through log monitoring or file
observations without modifying the original code.

Figure [T]illustrates a simplified service workflow for a drone
simulation. It demonstrates how various services and actions
interact, highlighting dependencies and state transitions.

reserve_port gazebo_server px4_instance 0 pose_sender

started started started started

0.04s / 0.25s 1.05s 18.39s
action_success ready waiting stopped

0.14s 1.04s 1.19s 300.20s

l l i)\puwn)nodc]}) l
final stopped ready started final
0.14s 300.18s 18.39s 1.19s 300.20s
final stopped action_success
300.18s 300.18s 17.51s
final final

300.18s 17.51s

Fig. 1: Example of Service Workflow with State Transition

In this workflow, reserve_port and spawn_model_0 are ac-
tions that terminate upon completion, while gazebo_server
and px4_instance_0 are persistent services. Before starting
a PX4 instance, the Gazebo server must be in the ready
state; otherwise, PX4 will fail to connect. Shepherd tracks
Gazebo’s internal state through log messages and launches
PX4 when it’s ready. PX4 also transitions through multiple
internal states, with other actions and services depending on
some of them.

III. ARCHITECTURE OF SHEPHERD
A. Overview

Shepherd is designed to manage and orchestrate local work-
flows that involve both types of tasks: actions that exit upon
completion and services that run until they are stopped. At
its core, Shepherd takes a YAML-based workflow description
as input, which defines the tasks, their dependencies, and the
conditions under which they should be executed.

Once provided with a workflow description, Shepherd eval-
uates the dependencies of each task. When the dependencies
for a task are resolved, Shepherd invokes the task, whether
it is an action or a service. The execution of these tasks is
monitored in real-time through the logs they produce.

Shepherd tracks application states through user-defined mes-
sages or keywords found in logs, as well as default states
introduced by Shepherd (discussed in Section [[II-D)). These
states can be used to define dependencies for other tasks in
the workflow.

Shepherd also monitors for stop signals such as user in-
tervention, success criteria, maximum run time, or keyboard
interrupts. In these cases, it stops all actions and services,
cleans up temporary files, and writes the workflow outcome.
These outcomes can be used to visualize the Directed Acyclic
Graph (DAG) and the timeline of execution.

B. Components

Shepherd has three primary components that work together
to ensure the reliable execution of the described workflows:

Workflow

Workflow

A

=

Description Outcome =
start or
cancel @ ﬁ visualizations
Shepherd
monitor Workflow Manager invoke upon
state dependency

resolution
Action
| Y

-

logs

Service
B

logs
\ \ |

Fig. 2: Shepherd Architecture
The Shepherd Workflow Manager invokes actions and services
when their dependencies are resolved. It then monitors their
internal state through the logs they produce. At the end, Shep-
herd generates outcomes such as state transition times, stdout,
and other logs, which can be used to generate visualizations
and analysis.

logs

the Service Manager, Program Executor, and Activity Monitor.
Figure [3] illustrates these components and their interactions.

o Service Manager: Responsible for preprocessing and
validating the YAML configuration, creating the execu-
tion DAG, initiating tasks according to the DAG order,
monitoring stop conditions for graceful shutdown, and
cleaning up temporary files.

o Program Executor: Starts services based on their de-
fined commands, tracks their default states, and checks
dependencies before execution to ensure all required
conditions are met.

« Activity Monitor: Monitors each service’s standard out-
put and specified files for state changes, updating internal
states based on user-defined criteria for accurate, real-
time state management.

C. Actions vs. Services

Shepherd categorizes tasks as either actions or services:

o Actions: Tasks that execute specific commands and
terminate upon completion, returning a result without
external intervention. They are ideal for operations with
a clear start and end, such as data processing jobs.

o Services: Tasks that continue running until explicitly
stopped, performing ongoing functions like handling user
requests or maintaining a database connection. Shepherd
ensures services start only when their dependencies are
met and are gracefully shut down when required.

By distinguishing between actions that terminate upon com-
pletion and services that require explicit termination, Shepherd
effectively manages the unique requirements and lifecycles of
each task type.

Service Manager Program Executor Activity Monitor

Monitor Logs

Preprocess ‘ Wait for Dependency

Monitor Specified Files

Initiate Tasks
Start Task

Monitor Stop Conditions Track User Defined

Track Default States

States

Graceful Shutdown

i

—— —

Task States ‘

Fig. 3: Shepherd Internal Components

The figure illustrates Shepherd’s three components: Service
Manager, Program Executor, and Activity Monitor. The Ser-
vice Manager handles configuration processing, execution
DAG creation, service initiation, and graceful shutdown with
cleanup. The Program Executor starts services, tracks their
states, and ensures dependencies are met. The Activity Monitor
monitors outputs and files for state changes, updating internal
states in real time.

D. Task State Machine

Shepherd manages task execution through a set of well-
defined states, ensuring dependencies are resolved before
execution. Each task has default states (initialized, started, and
final) and may include user-defined states reflecting specific
workflow needs.

Tasks transition from initialized to started once all de-
pendencies are resolved. After reaching started, tasks can
move through user-defined states based on execution progress.
Actions return an action_success state when they complete
with a zero return code, or an action_failure state if they
terminate with a non-zero return code. Services may transition
to a service_failure state if they stop unexpectedly.

Additionally, any task that receives a stop signal is marked
as stopped. Ultimately, all tasks, regardless of their type
or execution path, transition to a final state, reflecting the
completion and outcome of their execution.

Figure |4| illustrates the Shepherd state machine. This state
machine ensures a structured and predictable workflow by
accurately tracking the status and progression of each task
within Shepherd.

E. Configuration Language

The power and adaptability of Shepherd lie in its YAML-
based configuration file, which acts as the blueprint for any
workflow. This file allows users to precisely define the services
and actions involved, their dependencies on each other, the cri-
teria used to monitor their states, and other crucial operational
parameters.

Consider running a web application test that depends on a
database service. The workflow involves the following steps:

« Initialize Database: Start the database service and wait

for it to be ready.

Initialization

Y
Initialized

Dependencies Satisfied

Started

ransition to User Defined State

Action Complete Action Failed arvice Unexnectedlv Stonned \Ston Sional Receive
(Return Code 0) @mzcm Return C\QSLYVIM. Unexpectedly Stopped \Stop Signal Received

Stopped

Mark as Final State

Action Success Action Failure Service Failure

Mark as Final Slatcw(:s Final State /Mark as Final State

Fig. 4: Task State Machine
Tasks start in Initialized, move to Started once dependencies
are resolved, and transition through user-defined states based
on execution progress. Actions end in Action Success if they
complete with a zero return code or Action Failure with a non-
zero return code. Services can transition to Service Failure if
they stop unexpectedly. Any task that receives a stop signal is
marked as Stopped. Ultimately, all tasks reach the Final state.

o Start Web Server: Start the web server only after the
database is ready.

o Run Tests: Execute a series of automated tests to verify
the application’s functionality.

o Graceful Shutdown: Stop everything and clean up after
a successful test run.

Figure [5] shows the YAML configuration for this workflow.
The database service logs “Database is ready to accept re-
quests” when prepared with the required data. This message
is defined as the ready state. Shepherd monitors logs for
this message to mark the database as ready. The web server
depends on this ready state and defines an up state when it
starts successfully. Once the web server is up, Shepherd runs
the tests. The workflow initiates shutdown after meeting the
success criteria.

A task can also depend on the existence of a file, allowing
it to wait until a specific file is created. By specifying a
minimum file size, users can ensure the file is fully generated
as expected. Figure [f] shows an example.

Shepherd allows dependencies to be defined in two modes:
the default all mode, where all specified conditions must be
met before a task can start, and any mode, where a task begins
as soon as any one condition is satisfied. For example, the
configuration in Figure [7] triggers data analysis when either
sensor data or historical data is ready.

Besides these options, Shepherd also allows users to choose
the location of standard output and error files. Shepherd
provides three different shutdown mechanisms. Users can

1 tasks:

2 database:

3 type: "service"

4 command: "start_database.sh"

5 state:

6 log:

7 ready: "Database is ready to ..."
8 webserver:

9 type: "service"

10 command: "start_webserver.py —--port 8080"
11 dependency:

12 items:

13 database: "ready"

14 state:

15 log:

16 up: "Webserver started at 8080"
17 run_tests:

18 type: "action"

19 command: "pytest tests/"

20 dependency:

21 items:

22 webserver: "up"

23 success_criteria:

24 items:

25 run_tests: "action_success"

26 output:

27 state_times: "state_transition_times. json"

Fig. 5: Shepherd Configuration Example

1 tasks:
2 program-0:
3 ...
4 program-1:
5 file_dependency:
6 mode: "all"
7 items:
8 - path: "file-from-task-0.log"
9 min_size: 1
Fig. 6: Configuration for File Dependency
1 tasks:
2 data_analysis:
3 command: "python analyze_data.py"
4 dependency:
5 mode: "any"
6 items:
7 sensor_data: "ready"
8 historical_data: "ready"

Fig. 7: Configuration for “any” Dependency Mode

specify a maximum run time, or a stop file. In the case of
a stop file, if a user creates a file with the name specified
in the configuration, Shepherd will treat it as a stop signal.
Shepherd will also enter shutdown mode when the success
criteria are met or if any tasks fail (if shutdown on failure is
specified). A full list of configuration options is provided in
the user guide.

Larger Workflow of Discrete Tasks

Post

Pre
Processing

Processing

enact

workflow
Workflow
Manager

SO0IAISS JO MOIPHIOA -gNS

Fig. 8: Hierarchical Workflow for Drone Simulation
Shepherd converts a drone simulation, which comprises mul-
tiple persistent services, into a discrete task with defined
internal dependencies, start, and end points. This task can then
be seamlessly integrated into a task-based workflow manager
such as Makeflow.

IV. APPLICATION IN LARGE-SCALE DRONE SIMULATION:
THE SADE PROJECT

A. From Workflow of Services to Workflows of Discrete Tasks

The SADE project aims to develop a UTM (Unmanned
Traffic Management) system for safe, privacy-respecting sUAS
flights, emphasizing automated, fair decision-making with
speed, transparency, and scalability for large drone fleets [9]. It
includes a simulation component that allows users to simulate
SADE rules with a large number of drone fleets. In this
platform, Shepherd functions as a node-level workflow man-
ager, coordinating the launch of interconnected components
required for these simulations.

The simulation is set up through a web interface that sends
the simulation description to a distributed workflow manager.
The manager initiates a workflow consisting of preprocessing,
configuration creation, run simulation, and post-processing.
The run simulation task executes Shepherd on HPC cluster
nodes using the configuration from the previous step. Shepherd
starts a local workflow on each node, encapsulating all service
runs into a single task. This task is then integrated into the
larger distributed workflow. Figure [§]illustrates this workflow.

Besides converting services into tasks, Shepherd manages
dependencies among them. To simulate drone operations, tasks
must be executed in order. First, network ports are reserved
to ensure each process has a dedicated communication port.
Next, the Gazebo server is started to create the simulation
environment. It must be ready and accepting connections
before any drone instances can operate. Once Gazebo is ready,
PX4 instances, which control drone behavior, are started. Each
instance waits for a connection to Gazebo before drone models
are spawned. Finally, the Pose Sender begins transmitting the
drones’ position and rotation to a central server.

The simulation stops when it exceeds the maximum runtime
or receives a stop signal. Shepherd then gracefully shuts down

all services and actions, cleans up temporary files, and writes
the simulation outcome to the shared filesystem, making it
available for the next step in the distributed workflow.

B. Configurations for Drone Simulation

This section outlines key components of Shepherd’s config-
uration used in the drone simulation. The Gazebo server starts
only after permissions on ports.config have been changed.
Shepherd tracks this with its default state, action_success,
when an action is successful. Figure [0 shows the YAML
configuration for the Gazebo server. We also define a custom
state, ready, marked when the server logs “Connected to
gazebo master.”

1 gazebo_server:

2 type: "service"

3 command: "./start_gazebo_server.sh"

4 state:

5 log:

6 ready: "Connected to gazebo master"
7 dependency:

8 items:

9 chmod_port_config: "action_success"

Fig. 9: Configuration for Gazebo

1 px4_instance_0:

2 type: "service"

3 command: "./start_px4_instance.sh 0"

4 state:

5 log:

6 waiting_for_simulator: "Waiting ..."
7 ready: "Startup script returned "
8 dependency:

9 items:
10 gazebo_server: "ready"

Fig. 10: Configuration for PX4

1 spawn_model_0:

2 type: "action"

3 command: "./spawn_model.sh 0"

4 dependency:

5 items:

6 px4_instance_0: "waiting_ for_simulator"

Fig. 11: Configuration for Model Spawn

Next, each PX4 instance starts only after the Gazebo server
is ready, ensuring a proper connection. This is tracked by the
custom ready state in the Gazebo server. Figure [I0| shows the
YAML configuration for a PX4 instance. PX4 custom states
include waiting_for_simulator and ready, triggered by logs
”Waiting for simulator to accept connection” and ”Startup
script returned successfully.”

1 pose_sender:

2 type: "service"

3 command: "./start_pose_sender.sh"
4 dependency:

5 items:

6 px4_instance_0: "ready"

7 px4_instance_1: "ready"

8 px4_instance_2: "ready"

9 px4_instance_3: "ready"

Fig. 12: Configuration for Pose Sender

Each PX4 instance requires a corresponding model to
be spawned in the Gazebo environment. This spawning ac-
tion occurs only after the PX4 instance reaches the wait-
ing_for_simulator state. Figure |11]illustrates the YAML con-
figuration for spawning a model for a PX4 instance.

Finally, the Pose Sender service, which sends drone position
data to a central server, starts only after all PX4 instances are
in the ready state. Figure [T2] shows the YAML configuration
for Pose Sender.

C. Logs and Visualization

Shepherd not only manages task execution but also gen-
erates logs for detailed analysis and visualization. Each task
produces standard output, error logs, and state transition times,
which can be used to create insightful visualizations. Shepherd
Viz uses these outputs to produce three key visualizations:

« Execution DAG (Figure [13a): Illustrates the execution
order of tasks based on dependencies.

o Timeline (Figure [I3b): Shows task execution duration,
highlighting start times, states, and completion times for
performance analysis.

o State Transition Diagram (Figure [I3c): Combines
workflow structure with state transition times, detailing
when state changes occurred.

These visualizations provide a comprehensive view of the
workflow, aiding in performance analysis and debugging.
Figure [14]{shows Shepherd integrated into a larger workflow of
100 drones running in 25 nodes, where each Shepherd instance
manages 4 simulated drones.

These figures are generated by the Shepherd tool and have
been resized for space constraints. Full-resolution versions are
available on the project’s GitHub repository.

D. How Shepherd Helps

Shepherd significantly enhances the efficiency and reliabil-
ity of large-scale drone simulations by offering several key
advantages:

o Service as Task: Shepherd enables workflows that in-
clude services to be run as part of a larger distributed
workflow by encapsulating these services into a single
task with a defined start and end. Without Shepherd, it
would be challenging to manage services within tradi-
tional task-based workflows.

o Dependency Management: Shepherd ensures services
and actions start only when prerequisites are met, en-
abling proper synchronization, which is critical for drone
simulations.

o Automated State Tracking: By monitoring logs, Shep-
herd dynamically tracks states, allowing real-time work-
flow management without manual intervention.

o Graceful Shutdown and Cleanup: Shepherd provides
controlled shutdown mechanisms for persistent services.
This ensures services are terminated in an orderly manner,
resources are released, and temporary files are cleaned up,
preventing data loss and maintaining system stability.

« Robust Logging and Visualization: Shepherd generates
comprehensive logs and state transition data, which can
be used with tools like Shepherd Viz to create visualiza-
tions that optimize simulations.

o Simplified Configuration Management: Shepherd’s
YAML-based configuration simplifies the setup and main-
tenance of complex workflows, making it easy to visual-
ize, modify, and debug intricate scenarios.

o Enhanced Reliability: With robust error handling and
dependency checks, Shepherd improves simulation relia-
bility, reducing errors and ensuring predictable execution.

V. APPLICATION IN INTEGRATION TEST

Integration testing is a crucial phase in software develop-
ment, ensuring that different components of an application
work seamlessly together. Traditional test frameworks or bash
scripts can become cumbersome and error-prone, especially
when dealing with numerous configurations, datasets, and
setup variations. Shepherd addresses these challenges by pro-
viding a structured and automated approach to integration
testing.

Consider the YAML configuration example shown earlier in
figure 5] In a scenario where we need to run the web appli-
cation test 100 times with 100 different setups and datasets,
manually managing these variations can be impractical. Shep-
herd simplifies this process by allowing users to define each
test setup as a service or action within a unified workflow. The
configurations, dependencies, and state monitoring are clearly
defined, ensuring consistent and reliable execution across all
test runs.

By using Shepherd, each iteration of the integration test can
be automatically orchestrated, from initializing the database
and starting the web server to running the tests and performing
graceful shutdowns. This automation not only saves time
but also reduces the risk of human error, ensuring that all
tests are executed under the specified conditions. Additionally,
Shepherd’s robust logging and visualization tools provide
detailed insights into each test run, aiding in debugging and
analysis.

In summary, Shepherd offers a clear and concise way to
automate large-scale integration tests, providing a reliable
framework for managing complex test scenarios and enhancing
the overall efficiency and effectiveness of the integration
testing process.

\ \ \ \
F \ = o~
| — T~ — | [|
| i i i i i i

|
i

(a) Execution DAG

(b) Timeline

(c) State Transition Diagram

Fig. 13: Visualizations Produced by Shepherd for Drone Simulations
Three key visualizations generated by Shepherd (a) The Shepherd Workflow Diagram, illustrating the execution order of tasks
based on dependencies; (b) The Shepherd Timeline Diagram, showing task execution duration and states for performance
analysis, (c¢) The Shepherd State Transition Diagram, detailing state changes and the logical flow of the workflow. Together,
these visualizations provide a comprehensive view of the workflow. Note: Full-resolution figures are available at the project’s

GitHub repository.

Fig. 14: Timeline of 100 Drone Run
Left: Full timeline of complete workflow with 25 Shepherds
running 4 simulated drones each. Right: Detail view of 4
Shepherd nodes.

VI. RELATED WORK

a) Workflow Management: Several workflow managers
have been developed to orchestrate complex computational
pipelines. Apache Airflow [7]], for instance, provides a plat-
form for creating, scheduling, and monitoring workflows as
directed acyclic graphs (DAGs). Nextflow [4]], another popular
choice, excels at executing data-intensive pipelines across
diverse computing environments. Tools like Snakemake [[10],
[11] and Makeflow [12], inspired by the Unix make utility,
offer a declarative approach to workflow definition. While
these systems effectively manage task-based workflows, they
focus on task completion and data movement or transformation
as triggers for subsequent steps, and are not designed for
orchestrating persistent services with dynamic state dependen-
cies. Workflow description schemes like CWL [[13]] and YAWL

[14] are powerful, but Shepherd’s YAML-based configuration
is simpler and more human-readable, ideal for flexible and
rapid deployment.

Shepherd complements these workflow managers by intro-
ducing a novel approach to service orchestration. By mon-
itoring service states through log analysis and file creation,
Shepherd enables seamless integration of persistent services
into existing workflow paradigms.

b) Service Orchestration: Docker Compose allows con-
trol over the order of service startup and shutdown, but
it doesn’t wait for a container to be ’ready’—only that
it’s running [15]. Shepherd allows users to control startup
through log monitoring, enabling service startup to depend
on readiness and other internal states. Docker Swarm ensures
high availability with service replication and load balancing
[16], [[17], while Kubernetes offers advanced features like
automated rollouts, self-healing, and detailed monitoring [[18]],
[19]. Shepherd complements these tools by providing gran-
ular control over service lifecycles and dependencies on a
single machine. Using log-based state tracking and dynamic
dependency management, Shepherd enables complex service
interactions and workflows, ensuring coordinated execution
and enhanced reliability.

Service management tools like systemd [20] are effective
at starting and maintaining system-level services, managing
basic service dependencies and lifecycles. Shepherd builds
upon this foundation, offering a similar approach tailored
for the execution of services as tasks within a workflow. It
incorporates features like log-based state tracking and dynamic
dependency management. This allows Shepherd to handle
complex service interactions within a workflow, enhancing
flexibility and adaptability.

c¢) Log Monitoring and Real-Time Analysis: Log anal-
ysis is a powerful tool in software engineering, used for
anomaly detection [21]], [22]], event extraction [23[], [24]], per-
formance and security auditing, and many other applications.

This technique helps in identifying patterns, detecting issues,
and gaining insights into system behavior, often in real time
which can be used to trigger other system behavior. Shepherd
employs simple pattern matching to identify dynamic states
in the service execution lifecycle. However, this concept can
be extended by integrating more advanced event matching
algorithms such as SLCT [25]] and LogCluster [26]], further
enhancing Shepherd’s capabilities.

VII. FUTURE WORK AND CONCLUSIONS

Future work for Shepherd includes extending state tracking
to external sources like database queries or custom script
executions, which would enhance versatility and accommodate
more workflows. Another area for improvement is robust
failure handling. Currently, Shepherd performs a graceful
shutdown of the entire workflow if any task fails. Introducing
mechanisms to restart only the failed task could enhance re-
silience and uptime. These enhancements will involve balanc-
ing additional functionality with system performance, making
Shepherd more powerful for managing complex workflows in
various simulations and real-world applications.

Shepherd provides a robust framework for integrating ser-
vice workflows into traditional task-based workflows. It effec-
tively manages dynamic state dependencies among services
by inferring internal states via log monitoring. This allows
Shepherd to run services as tasks, which can be plugged into
any traditional workflow. Shepherd is especially useful when
a local workflow requires orchestrating complex dependencies
between multiple services and actions that depend on each
other’s dynamic states. This local workflow can then easily
be used as part of a distributed workflow. This approach
has proven valuable in managing complex, large-scale drone
simulations, demonstrating Shepherd’s practical application
and utility in real-world scenarios.

AVAILABILITY

Shepherd is open-source and available at: https://github.
com/cooperative-computing-lab/shepherd

ACKNOWLEDGMENT
This work was supported by NASA grant
8ONSSC23MO0058, “A Safety-Aware Ecosystem of

Interconnected and Reputable sUAS”

REFERENCES

[1] B. Sly-Delgado, T. S. Phung, C. Thomas, D. Simonetti, A. Hennessee,
B. Tovar, and D. Thain, “TaskVine: Managing In-Cluster Storage for
High-Throughput Data Intensive Workflows,” in 18th Workshop on
Workflows in Support of Large-Scale Science, 2023.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219-237, 2005.

[3] I Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludidscher, and S. Mock,
“Kepler: An extensible system for design and execution of scientific
workflows,” in Proceedings of the International Conference on Scientific
and Statistical Database Management, SSDBM, vol. 16, 07 2004, pp.
423 — 424.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]
(17]
[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, pp. 316-319, 2017.

S. Bowers and B. Ludéscher, “Actor-oriented design of scientific work-
flows,” in International Conference on Conceptual Modeling. Springer,
2005, pp. 369-384.

B. Ludischer, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
kepler system,” Concurrency and computation: Practice and experience,
vol. 18, no. 10, pp. 1039-1065, 2006.

A. S. Foundation, “Apache airflow documentation,” https://airflow.
apache.org/docs/apache-airflow/stable/, 2024, accessed: 2024-07-25.

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the tenth european conference on computer systems,
2015, pp. 1-17.

S. Project, “Sade: Safety-aware ecosystem of interconnected and rep-
utable suas,” https:/sites.nd.edu/uli-drone-reputations/, 2024, accessed:
September 16, 2024.

J. Koster and S. Rahmann, “Snakemake—a scalable bioinformatics
workflow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520-2522, 2012.
F. Mdlder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-
Tinch, V. Sochat, J. Forster, S. Lee, S. O. Twardziok, A. Kanitz et al.,
“Sustainable data analysis with snakemake,” F1000Research, vol. 10,
2021.

M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the Ist ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies, ser. SWEET "12. New
York, NY, USA: Association for Computing Machinery, 2012. [Online].
Auvailable: https://doi.org/10.1145/2443416.2443417

P. Amstutz, M. R. Crusoe, N. Tijani¢, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich et al., “Common
workflow language, v1. 0,” 2016.

W. M. Van Der Aalst and A. H. Ter Hofstede, “Yawl: yet another
workflow language,” Information systems, vol. 30, no. 4, pp. 245-275,
2005.

Docker, Inc., “Docker compose,” https://docs.docker.com/compose/,
2024, accessed: 2024.

D. Merkel et al., “Docker: lightweight linux containers for consistent
development and deployment,” Linux j, vol. 239, no. 2, p. 2, 2014.
Docker, “Docker swarm,” Online; accessed on [date], 2014. [Online].
Available: https://docs.docker.com/engine/swarm/

C. N. C. Foundation, “Kubernetes,” Online; accessed on [2024-07-23],
2014. [Online]. Available: https://kubernetes.io/docs/

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp- 50-57, 2016.

L. Poettering, K. Sievers et al., “systemd,” 2010. [Online]. Available:
https://www.freedesktop.org/wiki/Software/systemd/

A. Vervaet, “Monilog: An automated log-based anomaly detection
system for cloud computing infrastructures,” in 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE). 1EEE, 2021, pp.
2739-2743.

W. Xiong, W. Chen, J. Liu, and K. Zhao, “An anomaly detection
framework for system logs based on ensemble learning,” in Pacific Rim
International Conference on Artificial Intelligence. Springer, 2023, pp.
52-65.

N. Algiriyage, R. Prasanna, K. Stock, E. E. Doyle, and D. Johnston,
“Dees: a real-time system for event extraction from disaster-related web
text,” Social Network Analysis and Mining, vol. 13, no. 1, p. 6, 2022.
R. Yang, D. Qu, Y. Qian, Y. Dai, and S. Zhu, “An online log template
extraction method based on hierarchical clustering,” EURASIP Journal
on Wireless Communications and Networking, vol. 2019, no. 1, p. 135,
2019.

R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM 2003)(IEEE Cat. No. 03EX764). leee, 2003, pp.
119-126.

A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar, P. Donnelly,
P. Ivie, K. H. Anampa, P. Brenner, D. Thain, K. Lannon, and M. Hildreth,
“Scaling Data Intensive Physics Applications to 10k Cores on Non-
Dedicated Clusters with Lobster,” in IEEE Conference on Cluster
Computing, 2015.

https://github.com/cooperative-computing-lab/shepherd
https://github.com/cooperative-computing-lab/shepherd
https://airflow.apache.org/docs/apache-airflow/stable/
https://airflow.apache.org/docs/apache-airflow/stable/
https://sites.nd.edu/uli-drone-reputations/
https://doi.org/10.1145/2443416.2443417
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/docs/
https://www.freedesktop.org/wiki/Software/systemd/

	Introduction
	Service Workflows
	Architecture of Shepherd
	Overview
	Components
	Actions vs. Services
	Task State Machine
	Configuration Language

	Application in Large-Scale Drone Simulation: The SADE Project
	From Workflow of Services to Workflows of Discrete Tasks
	Configurations for Drone Simulation
	Logs and Visualization
	How Shepherd Helps

	Application in Integration Test
	Related Work
	Future Work and Conclusions
	References

