
Shepherd: Seamless Integration of Service
Workflows into Task-Based Workflows through

Log Monitoring
Md Saiful Islam

University of Notre Dame
Notre Dame, IN, USA

mislam5@nd.edu

Douglas Thain
University of Notre Dame
Notre Dame, IN, USA

dthain@nd.edu

Abstract—Traditional workflow managers focus on coordinat-
ing discrete tasks: actions that run to completion. However,
emerging workflows require persistent services that must be
managed alongside traditional tasks. We introduce Shepherd, a
local workflow manager that runs services as a task, enabling
them to be seamlessly integrated into larger distributed work-
flows. By inferring service states through log outputs and file
creations, Shepherd enables the coordinated startup and shut-
down of dependent services without modifying their original code.
We demonstrate Shepherd’s effectiveness in large-scale drone
simulations, where it enhances workflow flexibility, reliability,
and comprehensive logging and visualization.

Index Terms—Workflow Management, Service Orchestration

I. INTRODUCTION

Workflow management is the coordinated execution of a
series of tasks, often in a predefined order [1]–[4]. This
concept is crucial for scientific research and many other fields
where complex processes need to be managed efficiently [2],
[5]. Traditional workflow managers are often data-centric,
focusing on the movement and transformation of data between
tasks, with task dependencies based on completion, where a
dependent task can start only after the preceding task has
returned an exit status [3], [4], [6], [7]. They excel at handling
clear task dependencies, ensuring data consistency, and au-
tomating data processing pipelines [4], [7], [8]. However, this
model is not well-suited for applications that require persistent
services as part of a traditional task-based workflow.

For instance, consider a scenario where a web server should
start only after the database service has completed its initial-
ization and is ready to handle queries. The database does not
perform a single action that completes; instead, it reaches an
internal state that should dynamically trigger the launch of the
web server. This highlights the need for workflow management
that can accommodate such state-based dependencies.

Managing workflows with persistent services presents the
additional challenge of ensuring a graceful shutdown. Unlike
actions that terminate upon completion, services must be
carefully terminated to prevent data loss and ensure system
stability. This involves stopping the service itself, any sub-
processes it may have started, and cleaning up temporary
files. Failing to do so can cause resource leaks and instability,

hindering reliability and efficiency. Coordinated startup and
graceful shutdown allow services to integrate seamlessly into
workflows, just like any other self-completing tasks.

To overcome these challenges, a workflow manager must
track the internal states of services. This allows it to know
when they have completed initialization or reached states
that other processes depend on. Tracking these states without
making code changes presents a significant challenge, espe-
cially if the services lack a dedicated API for this purpose.
However, many modern applications extensively log their
actions and execution status, providing an opportunity to infer
the dynamic states of the application through log analysis.
Similarly, monitoring files produced by services can help infer
their states, which can then trigger the start or termination of
other actions or services in the workflow.

Shepherd is a workflow manager that puts these concepts
into practice. By monitoring standard output and specified
files, Shepherd infers application states. This enables Shep-
herd to effectively manage workflows that include persistent
services. For example, in the database and web server scenario,
Shepherd monitors the database service’s logs for a mes-
sage indicating successful startup. Upon detecting this state,
Shepherd triggers the initiation of the web server, ensuring
efficient workflow execution. This state-based dependency
management and state inference empowers Shepherd to handle
complex service workflows without requiring code modifica-
tions. Moreover, Shepherd wraps the entire service workflow
into a single task that terminates upon completion, making it
easy to integrate into larger task-based workflows.

In this paper, we present the architecture of Shepherd,
focusing on its novel method for integrating service workflows
into task-based environments. We demonstrate Shepherd’s ca-
pabilities through large-scale drone simulations, where it effec-
tively manages dependencies and coordinates the startup and
shutdown of services. Additionally, we show how Shepherd
simplifies integration testing, a process often challenging with
traditional bash scripts. By integrating services into traditional
task-based workflows, Shepherd enhances workflow efficiency,
reliability, and ease of management.



II. SERVICE WORKFLOWS

Service workflows involve coordinating services that per-
sist throughout the workflow’s lifecycle and require dynamic
state management. These workflows present unique challenges
and opportunities, particularly in environments where service
dependencies and state transitions are crucial.

a) Defining Service Workflows: A service workflow is
a type of workflow that integrates both actions that terminate
upon completion and persistent services into a unified execu-
tion plan. Services are processes that continue running until
explicitly stopped, maintaining an operational state throughout
the workflow. Examples include web servers, databases, and
simulation engines.

b) Challenges of Service Workflows: Service workflows
present several unique challenges compared to traditional task-
based workflows:

• Complex Dependency Management: Services often de-
pend on specific internal states of other services before
they can start. For example, in a drone simulation, a
physics engine must be ready before the drone autopilot
can spawn a new model. This requires coordination based
on internal states rather than task completion, necessitat-
ing more sophisticated management.

• Graceful Shutdown: Unlike actions that terminate upon
completion, services require controlled shutdown pro-
cesses to prevent data loss and ensure system stability.
This involves stopping the service, terminating subpro-
cesses, and cleaning up resources.

• Indirect State Tracking: Many services lack explicit
interfaces for external monitoring of their internal states.
This makes it difficult for workflow managers to deter-
mine when a service is ready, has successfully completed
a task, or is experiencing errors.

c) Shepherd’s Approach: Shepherd addresses these
challenges by treating services as first-class citizens within the
workflow. It introduces the concept of services as a task, where
one instance of Shepherd itself constitutes a task. A service
workflow is thereby encapsulated to function as a single task
that can be seamlessly integrated into a task-based workflow.
Shepherd services require specific attributes that differentiate
them from regular services:

• Start Conditions: These conditions specify the states of
other services or actions that must be satisfied before the
service task can start.

• Stop Conditions: These conditions trigger the graceful
shutdown of the service task when met.

• Well-Defined Internal States: Services must define
states that can be tracked through log monitoring or file
observations without modifying the original code.

Figure 1 illustrates a simplified service workflow for a drone
simulation. It demonstrates how various services and actions
interact, highlighting dependencies and state transitions.

reserve_port gazebo_server px4_instance_0

spawn_model_0

pose_sender

started
0.04s

action_success
0.14s

final
0.14s

started
0.25s

ready
1.04s

stopped
300.18s

started
1.05s

final
300.18s

waiting
1.19s

ready
18.39s

started
1.19s

stopped
300.18s

started
18.39s

final
300.18s

action_success
17.51s

final
17.51s

stopped
300.20s

final
300.20s

Fig. 1: Example of Service Workflow with State Transition
In this workflow, reserve port and spawn model 0 are ac-
tions that terminate upon completion, while gazebo server
and px4 instance 0 are persistent services. Before starting
a PX4 instance, the Gazebo server must be in the ready
state; otherwise, PX4 will fail to connect. Shepherd tracks
Gazebo’s internal state through log messages and launches
PX4 when it’s ready. PX4 also transitions through multiple
internal states, with other actions and services depending on
some of them.

III. ARCHITECTURE OF SHEPHERD

A. Overview

Shepherd is designed to manage and orchestrate local work-
flows that involve both types of tasks: actions that exit upon
completion and services that run until they are stopped. At
its core, Shepherd takes a YAML-based workflow description
as input, which defines the tasks, their dependencies, and the
conditions under which they should be executed.

Once provided with a workflow description, Shepherd eval-
uates the dependencies of each task. When the dependencies
for a task are resolved, Shepherd invokes the task, whether
it is an action or a service. The execution of these tasks is
monitored in real-time through the logs they produce.

Shepherd tracks application states through user-defined mes-
sages or keywords found in logs, as well as default states
introduced by Shepherd (discussed in Section III-D). These
states can be used to define dependencies for other tasks in
the workflow.

Shepherd also monitors for stop signals such as user in-
tervention, success criteria, maximum run time, or keyboard
interrupts. In these cases, it stops all actions and services,
cleans up temporary files, and writes the workflow outcome.
These outcomes can be used to visualize the Directed Acyclic
Graph (DAG) and the timeline of execution.

B. Components

Shepherd has three primary components that work together
to ensure the reliable execution of the described workflows:



Shepherd
Workflow Manager

logs logs logs

Action
X

invoke upon 
dependency 

resolution

monitor
state

Workflow
Description

Workflow
Outcome

Service
A

Service
B

Action
Y

logs

start or
cancel visualizations

Fig. 2: Shepherd Architecture
The Shepherd Workflow Manager invokes actions and services

when their dependencies are resolved. It then monitors their
internal state through the logs they produce. At the end, Shep-
herd generates outcomes such as state transition times, stdout,
and other logs, which can be used to generate visualizations
and analysis.

the Service Manager, Program Executor, and Activity Monitor.
Figure 3 illustrates these components and their interactions.

• Service Manager: Responsible for preprocessing and
validating the YAML configuration, creating the execu-
tion DAG, initiating tasks according to the DAG order,
monitoring stop conditions for graceful shutdown, and
cleaning up temporary files.

• Program Executor: Starts services based on their de-
fined commands, tracks their default states, and checks
dependencies before execution to ensure all required
conditions are met.

• Activity Monitor: Monitors each service’s standard out-
put and specified files for state changes, updating internal
states based on user-defined criteria for accurate, real-
time state management.

C. Actions vs. Services

Shepherd categorizes tasks as either actions or services:
• Actions: Tasks that execute specific commands and

terminate upon completion, returning a result without
external intervention. They are ideal for operations with
a clear start and end, such as data processing jobs.

• Services: Tasks that continue running until explicitly
stopped, performing ongoing functions like handling user
requests or maintaining a database connection. Shepherd
ensures services start only when their dependencies are
met and are gracefully shut down when required.

By distinguishing between actions that terminate upon com-
pletion and services that require explicit termination, Shepherd
effectively manages the unique requirements and lifecycles of
each task type.

Program Executor

Wait for Dependency

Start Task

Track Default States

Service Manager

Preprocess

Initiate Tasks

Monitor Stop Conditions

Graceful Shutdown

Activity Monitor

Monitor Logs

Monitor Specified Files

Track User Defined 
States

Task States

Fig. 3: Shepherd Internal Components
The figure illustrates Shepherd’s three components: Service
Manager, Program Executor, and Activity Monitor. The Ser-
vice Manager handles configuration processing, execution
DAG creation, service initiation, and graceful shutdown with
cleanup. The Program Executor starts services, tracks their
states, and ensures dependencies are met. The Activity Monitor
monitors outputs and files for state changes, updating internal
states in real time.

D. Task State Machine

Shepherd manages task execution through a set of well-
defined states, ensuring dependencies are resolved before
execution. Each task has default states (initialized, started, and
final) and may include user-defined states reflecting specific
workflow needs.

Tasks transition from initialized to started once all de-
pendencies are resolved. After reaching started, tasks can
move through user-defined states based on execution progress.
Actions return an action success state when they complete
with a zero return code, or an action failure state if they
terminate with a non-zero return code. Services may transition
to a service failure state if they stop unexpectedly.

Additionally, any task that receives a stop signal is marked
as stopped. Ultimately, all tasks, regardless of their type
or execution path, transition to a final state, reflecting the
completion and outcome of their execution.

Figure 4 illustrates the Shepherd state machine. This state
machine ensures a structured and predictable workflow by
accurately tracking the status and progression of each task
within Shepherd.

E. Configuration Language

The power and adaptability of Shepherd lie in its YAML-
based configuration file, which acts as the blueprint for any
workflow. This file allows users to precisely define the services
and actions involved, their dependencies on each other, the cri-
teria used to monitor their states, and other crucial operational
parameters.

Consider running a web application test that depends on a
database service. The workflow involves the following steps:

• Initialize Database: Start the database service and wait
for it to be ready.



Start

Initialized

Initialization

Started

Dependencies Satisfied

User Defined State

Transition to User Defined State

Action Success

Action Complete
(Return Code 0)

Action Failure

Action Failed
(Non-zero Return Code)

Service Failure

Service Unexpectedly Stopped

Stopped

Stop Signal Received

Final

Mark as Final State Mark as Final State Mark as Final State Mark as Final State

Fig. 4: Task State Machine
Tasks start in Initialized, move to Started once dependencies
are resolved, and transition through user-defined states based
on execution progress. Actions end in Action Success if they
complete with a zero return code or Action Failure with a non-
zero return code. Services can transition to Service Failure if
they stop unexpectedly. Any task that receives a stop signal is
marked as Stopped. Ultimately, all tasks reach the Final state.

• Start Web Server: Start the web server only after the
database is ready.

• Run Tests: Execute a series of automated tests to verify
the application’s functionality.

• Graceful Shutdown: Stop everything and clean up after
a successful test run.

Figure 5 shows the YAML configuration for this workflow.
The database service logs ”Database is ready to accept re-
quests” when prepared with the required data. This message
is defined as the ready state. Shepherd monitors logs for
this message to mark the database as ready. The web server
depends on this ready state and defines an up state when it
starts successfully. Once the web server is up, Shepherd runs
the tests. The workflow initiates shutdown after meeting the
success criteria.

A task can also depend on the existence of a file, allowing
it to wait until a specific file is created. By specifying a
minimum file size, users can ensure the file is fully generated
as expected. Figure 6 shows an example.

Shepherd allows dependencies to be defined in two modes:
the default all mode, where all specified conditions must be
met before a task can start, and any mode, where a task begins
as soon as any one condition is satisfied. For example, the
configuration in Figure 7 triggers data analysis when either
sensor data or historical data is ready.

Besides these options, Shepherd also allows users to choose
the location of standard output and error files. Shepherd
provides three different shutdown mechanisms. Users can

1 tasks:
2 database:
3 type: "service"
4 command: "start_database.sh"
5 state:
6 log:
7 ready: "Database is ready to ..."
8 webserver:
9 type: "service"

10 command: "start_webserver.py --port 8080"
11 dependency:
12 items:
13 database: "ready"
14 state:
15 log:
16 up: "Webserver started at 8080"
17 run_tests:
18 type: "action"
19 command: "pytest tests/"
20 dependency:
21 items:
22 webserver: "up"
23 success_criteria:
24 items:
25 run_tests: "action_success"
26 output:
27 state_times: "state_transition_times.json"

Fig. 5: Shepherd Configuration Example

1 tasks:
2 program-0:
3 ...
4 program-1:
5 file_dependency:
6 mode: "all"
7 items:
8 - path: "file-from-task-0.log"
9 min_size: 1

Fig. 6: Configuration for File Dependency

1 tasks:
2 data_analysis:
3 command: "python analyze_data.py"
4 dependency:
5 mode: "any"
6 items:
7 sensor_data: "ready"
8 historical_data: "ready"

Fig. 7: Configuration for ”any” Dependency Mode

specify a maximum run time, or a stop file. In the case of
a stop file, if a user creates a file with the name specified
in the configuration, Shepherd will treat it as a stop signal.
Shepherd will also enter shutdown mode when the success
criteria are met or if any tasks fail (if shutdown on failure is
specified). A full list of configuration options is provided in
the user guide.



Pre 
Processing Create Config Run 

Simulation
Post 

ProcessingRun 
Simulation

start complete

invoke

pose
senderpx4gazebo

Shepherd

log log log

Larger Workflow of Discrete Tasks

S
ub- W

orkflow
 of S

ervices

Run 
Simulation

Web Browser

Web Server

(100X)

Workflow 
Manager

enact
workflow

Fig. 8: Hierarchical Workflow for Drone Simulation
Shepherd converts a drone simulation, which comprises mul-
tiple persistent services, into a discrete task with defined
internal dependencies, start, and end points. This task can then
be seamlessly integrated into a task-based workflow manager
such as Makeflow.

IV. APPLICATION IN LARGE-SCALE DRONE SIMULATION:
THE SADE PROJECT

A. From Workflow of Services to Workflows of Discrete Tasks

The SADE project aims to develop a UTM (Unmanned
Traffic Management) system for safe, privacy-respecting sUAS
flights, emphasizing automated, fair decision-making with
speed, transparency, and scalability for large drone fleets [9]. It
includes a simulation component that allows users to simulate
SADE rules with a large number of drone fleets. In this
platform, Shepherd functions as a node-level workflow man-
ager, coordinating the launch of interconnected components
required for these simulations.

The simulation is set up through a web interface that sends
the simulation description to a distributed workflow manager.
The manager initiates a workflow consisting of preprocessing,
configuration creation, run simulation, and post-processing.
The run simulation task executes Shepherd on HPC cluster
nodes using the configuration from the previous step. Shepherd
starts a local workflow on each node, encapsulating all service
runs into a single task. This task is then integrated into the
larger distributed workflow. Figure 8 illustrates this workflow.

Besides converting services into tasks, Shepherd manages
dependencies among them. To simulate drone operations, tasks
must be executed in order. First, network ports are reserved
to ensure each process has a dedicated communication port.
Next, the Gazebo server is started to create the simulation
environment. It must be ready and accepting connections
before any drone instances can operate. Once Gazebo is ready,
PX4 instances, which control drone behavior, are started. Each
instance waits for a connection to Gazebo before drone models
are spawned. Finally, the Pose Sender begins transmitting the
drones’ position and rotation to a central server.

The simulation stops when it exceeds the maximum runtime
or receives a stop signal. Shepherd then gracefully shuts down

all services and actions, cleans up temporary files, and writes
the simulation outcome to the shared filesystem, making it
available for the next step in the distributed workflow.

B. Configurations for Drone Simulation

This section outlines key components of Shepherd’s config-
uration used in the drone simulation. The Gazebo server starts
only after permissions on ports.config have been changed.
Shepherd tracks this with its default state, action success,
when an action is successful. Figure 9 shows the YAML
configuration for the Gazebo server. We also define a custom
state, ready, marked when the server logs ”Connected to
gazebo master.”

1 gazebo_server:
2 type: "service"
3 command: "./start_gazebo_server.sh"
4 state:
5 log:
6 ready: "Connected to gazebo master"
7 dependency:
8 items:
9 chmod_port_config: "action_success"

Fig. 9: Configuration for Gazebo

1 px4_instance_0:
2 type: "service"
3 command: "./start_px4_instance.sh 0"
4 state:
5 log:
6 waiting_for_simulator: "Waiting ..."
7 ready: "Startup script returned ..."
8 dependency:
9 items:

10 gazebo_server: "ready"

Fig. 10: Configuration for PX4

1 spawn_model_0:
2 type: "action"
3 command: "./spawn_model.sh 0"
4 dependency:
5 items:
6 px4_instance_0: "waiting_for_simulator"

Fig. 11: Configuration for Model Spawn

Next, each PX4 instance starts only after the Gazebo server
is ready, ensuring a proper connection. This is tracked by the
custom ready state in the Gazebo server. Figure 10 shows the
YAML configuration for a PX4 instance. PX4 custom states
include waiting for simulator and ready, triggered by logs
”Waiting for simulator to accept connection” and ”Startup
script returned successfully.”



1 pose_sender:
2 type: "service"
3 command: "./start_pose_sender.sh"
4 dependency:
5 items:
6 px4_instance_0: "ready"
7 px4_instance_1: "ready"
8 px4_instance_2: "ready"
9 px4_instance_3: "ready"

Fig. 12: Configuration for Pose Sender

Each PX4 instance requires a corresponding model to
be spawned in the Gazebo environment. This spawning ac-
tion occurs only after the PX4 instance reaches the wait-
ing for simulator state. Figure 11 illustrates the YAML con-
figuration for spawning a model for a PX4 instance.

Finally, the Pose Sender service, which sends drone position
data to a central server, starts only after all PX4 instances are
in the ready state. Figure 12 shows the YAML configuration
for Pose Sender.

C. Logs and Visualization

Shepherd not only manages task execution but also gen-
erates logs for detailed analysis and visualization. Each task
produces standard output, error logs, and state transition times,
which can be used to create insightful visualizations. Shepherd
Viz uses these outputs to produce three key visualizations:

• Execution DAG (Figure 13a): Illustrates the execution
order of tasks based on dependencies.

• Timeline (Figure 13b): Shows task execution duration,
highlighting start times, states, and completion times for
performance analysis.

• State Transition Diagram (Figure 13c): Combines
workflow structure with state transition times, detailing
when state changes occurred.

These visualizations provide a comprehensive view of the
workflow, aiding in performance analysis and debugging.
Figure 14 shows Shepherd integrated into a larger workflow of
100 drones running in 25 nodes, where each Shepherd instance
manages 4 simulated drones.

These figures are generated by the Shepherd tool and have
been resized for space constraints. Full-resolution versions are
available on the project’s GitHub repository.

D. How Shepherd Helps

Shepherd significantly enhances the efficiency and reliabil-
ity of large-scale drone simulations by offering several key
advantages:

• Service as Task: Shepherd enables workflows that in-
clude services to be run as part of a larger distributed
workflow by encapsulating these services into a single
task with a defined start and end. Without Shepherd, it
would be challenging to manage services within tradi-
tional task-based workflows.

• Dependency Management: Shepherd ensures services
and actions start only when prerequisites are met, en-
abling proper synchronization, which is critical for drone
simulations.

• Automated State Tracking: By monitoring logs, Shep-
herd dynamically tracks states, allowing real-time work-
flow management without manual intervention.

• Graceful Shutdown and Cleanup: Shepherd provides
controlled shutdown mechanisms for persistent services.
This ensures services are terminated in an orderly manner,
resources are released, and temporary files are cleaned up,
preventing data loss and maintaining system stability.

• Robust Logging and Visualization: Shepherd generates
comprehensive logs and state transition data, which can
be used with tools like Shepherd Viz to create visualiza-
tions that optimize simulations.

• Simplified Configuration Management: Shepherd’s
YAML-based configuration simplifies the setup and main-
tenance of complex workflows, making it easy to visual-
ize, modify, and debug intricate scenarios.

• Enhanced Reliability: With robust error handling and
dependency checks, Shepherd improves simulation relia-
bility, reducing errors and ensuring predictable execution.

V. APPLICATION IN INTEGRATION TEST

Integration testing is a crucial phase in software develop-
ment, ensuring that different components of an application
work seamlessly together. Traditional test frameworks or bash
scripts can become cumbersome and error-prone, especially
when dealing with numerous configurations, datasets, and
setup variations. Shepherd addresses these challenges by pro-
viding a structured and automated approach to integration
testing.

Consider the YAML configuration example shown earlier in
figure 5. In a scenario where we need to run the web appli-
cation test 100 times with 100 different setups and datasets,
manually managing these variations can be impractical. Shep-
herd simplifies this process by allowing users to define each
test setup as a service or action within a unified workflow. The
configurations, dependencies, and state monitoring are clearly
defined, ensuring consistent and reliable execution across all
test runs.

By using Shepherd, each iteration of the integration test can
be automatically orchestrated, from initializing the database
and starting the web server to running the tests and performing
graceful shutdowns. This automation not only saves time
but also reduces the risk of human error, ensuring that all
tests are executed under the specified conditions. Additionally,
Shepherd’s robust logging and visualization tools provide
detailed insights into each test run, aiding in debugging and
analysis.

In summary, Shepherd offers a clear and concise way to
automate large-scale integration tests, providing a reliable
framework for managing complex test scenarios and enhancing
the overall efficiency and effectiveness of the integration
testing process.



reserve_port

chmod_port_config

final

gazebo_server

final

px4_instance_0

ready

px4_instance_1

ready

px4_instance_2

ready

px4_instance_3

ready

spawn_model_0

waiting_for_simulator

pose_sender

ready

spawn_model_1

waiting_for_simulator ready

spawn_model_2

waiting_for_simulatorready

spawn_model_3

waiting_for_simulatorready

(a) Execution DAG

0 50 100 150 200 250 300
Time (seconds)

pose_sender

spawn_model_0

spawn_model_3

spawn_model_2

spawn_model_1

px4_instance_3

px4_instance_2

px4_instance_1

px4_instance_0

gazebo_server

chmod_port_config

reserve_port

started
stopped
action_success
waiting_for_simulator
ready
complete

(b) Timeline

reserve_port

chmod_port_config

gazebo_server

px4_instance_0

spawn_model_0

px4_instance_1

spawn_model_1

px4_instance_2

spawn_model_2

px4_instance_3

spawn_model_3

pose_sender

initialized
0.03s

started
0.04s

complete
0.14s

action_success
0.14s

final
0.14s

started
0.14s

reserve_port final

initialized
0.03s

action_success
0.25s

final
0.25s

started
0.25s

chmod_port_config action_success

initialized
0.03s

ready
1.04s

stopped
300.18s

started
1.05s

gazebo_server ready

started
1.05s

gazebo_server ready

started
1.05s

gazebo_server ready

started
1.05s

gazebo_server ready

final
300.18s

initialized
0.04s

waiting_for_simulator
1.19s

ready
18.39s

started
1.19s

px4_instance_0 waiting_for_simulator

stopped
300.18s

started
18.39s

px4_instance_0 ready

final
300.18s

initialized
0.04s

action_success
17.51s

final
17.51s

initialized
0.04s

waiting_for_simulator
1.18s

ready
18.20s

started
1.18s

px4_instance_1 waiting_for_simulator

stopped
300.18s

px4_instance_1 ready

final
300.18s

initialized
0.04s

action_success
17.40s

final
17.40s

initialized
0.04s

waiting_for_simulator
1.18s

ready
18.20s

started
1.18s

px4_instance_2 waiting_for_simulator

stopped
300.18s

px4_instance_2 ready

final
300.18s

initialized
0.04s

action_success
17.40s

final
17.40s

initialized
0.04s

waiting_for_simulator
1.18s

ready
18.20s

started
1.18s

px4_instance_3 waiting_for_simulator

stopped
300.18s

px4_instance_3 ready

final
300.18s

initialized
0.04s

action_success
17.40s

final
17.40s

initialized
0.04s

stopped
300.20s

final
300.20s

(c) State Transition Diagram

Fig. 13: Visualizations Produced by Shepherd for Drone Simulations
Three key visualizations generated by Shepherd (a) The Shepherd Workflow Diagram, illustrating the execution order of tasks
based on dependencies; (b) The Shepherd Timeline Diagram, showing task execution duration and states for performance
analysis; (c) The Shepherd State Transition Diagram, detailing state changes and the logical flow of the workflow. Together,
these visualizations provide a comprehensive view of the workflow. Note: Full-resolution figures are available at the project’s
GitHub repository.

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

node_25_pose_sender
node_25_spawn_model_96
node_25_spawn_model_99
node_25_spawn_model_98
node_25_spawn_model_97
node_25_px4_instance_98
node_25_px4_instance_99
node_25_px4_instance_97
node_25_px4_instance_96

node_25_gazebo_server
node_25_copy_ports_config

node_25_chmod_port_config
node_25_reserve_port
node_24_pose_sender

node_24_spawn_model_94
node_24_spawn_model_93
node_24_spawn_model_95
node_24_spawn_model_92
node_24_px4_instance_94
node_24_px4_instance_92
node_24_px4_instance_95
node_24_px4_instance_93

node_24_gazebo_server
node_24_copy_ports_config

node_24_chmod_port_config
node_24_reserve_port
node_23_pose_sender

node_23_spawn_model_88
node_23_spawn_model_89
node_23_spawn_model_90
node_23_spawn_model_91
node_23_px4_instance_91
node_23_px4_instance_89
node_23_px4_instance_88
node_23_px4_instance_90

node_23_copy_ports_config
node_23_gazebo_server

node_23_chmod_port_config
node_23_reserve_port
node_22_pose_sender

node_22_spawn_model_87
node_22_spawn_model_85
node_22_spawn_model_86
node_22_spawn_model_84
node_22_px4_instance_86
node_22_px4_instance_85
node_22_px4_instance_87
node_22_px4_instance_84

node_22_gazebo_server
node_22_copy_ports_config

node_22_chmod_port_config
node_22_reserve_port
node_21_pose_sender

node_21_spawn_model_81
node_21_spawn_model_83
node_21_spawn_model_80
node_21_spawn_model_82
node_21_px4_instance_83
node_21_px4_instance_81
node_21_px4_instance_80
node_21_px4_instance_82

node_21_gazebo_server
node_21_copy_ports_config

node_21_chmod_port_config
node_21_reserve_port
node_20_pose_sender

node_20_spawn_model_77
node_20_spawn_model_76
node_20_spawn_model_78
node_20_spawn_model_79
node_20_px4_instance_79
node_20_px4_instance_78
node_20_px4_instance_76
node_20_px4_instance_77

node_20_copy_ports_config
node_20_gazebo_server

node_20_chmod_port_config
node_20_reserve_port
node_19_pose_sender

node_19_spawn_model_75
node_19_spawn_model_74
node_19_spawn_model_72
node_19_spawn_model_73
node_19_px4_instance_74
node_19_px4_instance_75
node_19_px4_instance_72
node_19_px4_instance_73

node_19_gazebo_server
node_19_copy_ports_config

node_19_chmod_port_config
node_19_reserve_port
node_18_pose_sender

node_18_spawn_model_70
node_18_spawn_model_69
node_18_spawn_model_68
node_18_spawn_model_71
node_18_px4_instance_69
node_18_px4_instance_70
node_18_px4_instance_68
node_18_px4_instance_71

node_18_copy_ports_config
node_18_gazebo_server

node_18_chmod_port_config
node_18_reserve_port
node_17_pose_sender

node_17_spawn_model_67
node_17_spawn_model_65
node_17_spawn_model_66
node_17_spawn_model_64
node_17_px4_instance_66
node_17_px4_instance_65
node_17_px4_instance_64
node_17_px4_instance_67

node_17_copy_ports_config
node_17_gazebo_server

node_17_chmod_port_config
node_17_reserve_port
node_16_pose_sender

node_16_spawn_model_60
node_16_spawn_model_61
node_16_spawn_model_62
node_16_spawn_model_63
node_16_px4_instance_62
node_16_px4_instance_63
node_16_px4_instance_61
node_16_px4_instance_60

node_16_gazebo_server
node_16_copy_ports_config

node_16_chmod_port_config
node_16_reserve_port
node_15_pose_sender

node_15_spawn_model_56
node_15_spawn_model_59
node_15_spawn_model_57
node_15_spawn_model_58
node_15_px4_instance_56
node_15_px4_instance_57
node_15_px4_instance_58
node_15_px4_instance_59

node_15_gazebo_server
node_15_copy_ports_config

node_15_chmod_port_config
node_15_reserve_port
node_14_pose_sender

node_14_spawn_model_53
node_14_spawn_model_55
node_14_spawn_model_54
node_14_spawn_model_52
node_14_px4_instance_55
node_14_px4_instance_54
node_14_px4_instance_52
node_14_px4_instance_53

node_14_copy_ports_config
node_14_gazebo_server

node_14_chmod_port_config
node_14_reserve_port
node_13_pose_sender

node_13_spawn_model_50
node_13_spawn_model_51
node_13_spawn_model_49
node_13_spawn_model_48
node_13_px4_instance_50
node_13_px4_instance_49
node_13_px4_instance_48
node_13_px4_instance_51

node_13_copy_ports_config
node_13_gazebo_server

node_13_chmod_port_config
node_13_reserve_port
node_12_pose_sender

node_12_spawn_model_44
node_12_spawn_model_47
node_12_spawn_model_45
node_12_spawn_model_46
node_12_px4_instance_44
node_12_px4_instance_45
node_12_px4_instance_46
node_12_px4_instance_47

node_12_copy_ports_config
node_12_gazebo_server

node_12_chmod_port_config
node_12_reserve_port
node_11_pose_sender

node_11_spawn_model_41
node_11_spawn_model_42
node_11_spawn_model_43
node_11_spawn_model_40
node_11_px4_instance_43
node_11_px4_instance_41
node_11_px4_instance_42
node_11_px4_instance_40

node_11_copy_ports_config
node_11_gazebo_server

node_11_chmod_port_config
node_11_reserve_port
node_10_pose_sender

node_10_spawn_model_37
node_10_spawn_model_36
node_10_spawn_model_39
node_10_spawn_model_38
node_10_px4_instance_38
node_10_px4_instance_37
node_10_px4_instance_39
node_10_px4_instance_36

node_10_copy_ports_config
node_10_gazebo_server

node_10_chmod_port_config
node_10_reserve_port
node_9_pose_sender

node_9_spawn_model_35
node_9_spawn_model_33
node_9_spawn_model_34
node_9_spawn_model_32
node_9_px4_instance_32
node_9_px4_instance_33
node_9_px4_instance_34
node_9_px4_instance_35

node_9_copy_ports_config
node_9_gazebo_server

node_9_chmod_port_config
node_9_reserve_port
node_8_pose_sender

node_8_spawn_model_29
node_8_spawn_model_30
node_8_spawn_model_31
node_8_spawn_model_28
node_8_px4_instance_31
node_8_px4_instance_29
node_8_px4_instance_30
node_8_px4_instance_28

node_8_gazebo_server
node_8_copy_ports_config

node_8_chmod_port_config
node_8_reserve_port
node_7_pose_sender

node_7_spawn_model_26
node_7_spawn_model_25
node_7_spawn_model_27
node_7_spawn_model_24
node_7_px4_instance_24
node_7_px4_instance_27
node_7_px4_instance_25
node_7_px4_instance_26

node_7_copy_ports_config
node_7_gazebo_server

node_7_chmod_port_config
node_7_reserve_port
node_6_pose_sender

node_6_spawn_model_20
node_6_spawn_model_22
node_6_spawn_model_21
node_6_spawn_model_23
node_6_px4_instance_20
node_6_px4_instance_22
node_6_px4_instance_23
node_6_px4_instance_21

node_6_copy_ports_config
node_6_gazebo_server

node_6_chmod_port_config
node_6_reserve_port
node_5_pose_sender

node_5_spawn_model_17
node_5_spawn_model_16
node_5_spawn_model_19
node_5_spawn_model_18
node_5_px4_instance_18
node_5_px4_instance_16
node_5_px4_instance_17
node_5_px4_instance_19

node_5_copy_ports_config
node_5_gazebo_server

node_5_chmod_port_config
node_5_reserve_port
node_4_pose_sender

node_4_spawn_model_14
node_4_spawn_model_12
node_4_spawn_model_13
node_4_spawn_model_15
node_4_px4_instance_13
node_4_px4_instance_12
node_4_px4_instance_15
node_4_px4_instance_14

node_4_copy_ports_config
node_4_gazebo_server

node_4_chmod_port_config
node_4_reserve_port
node_3_pose_sender

node_3_spawn_model_9
node_3_spawn_model_11
node_3_spawn_model_10
node_3_spawn_model_8
node_3_px4_instance_9

node_3_px4_instance_11
node_3_px4_instance_8

node_3_px4_instance_10
node_3_copy_ports_config

node_3_gazebo_server
node_3_chmod_port_config

node_3_reserve_port
node_2_pose_sender

node_2_spawn_model_6
node_2_spawn_model_4
node_2_spawn_model_5
node_2_spawn_model_7
node_2_px4_instance_7
node_2_px4_instance_4
node_2_px4_instance_6
node_2_px4_instance_5
node_2_gazebo_server

node_2_copy_ports_config
node_2_chmod_port_config

node_2_reserve_port
node_1_pose_sender

node_1_spawn_model_2
node_1_spawn_model_3
node_1_spawn_model_0
node_1_spawn_model_1
node_1_px4_instance_1
node_1_px4_instance_2
node_1_px4_instance_3
node_1_px4_instance_0
node_1_gazebo_server

node_1_copy_ports_config
node_1_chmod_port_config

node_1_reserve_port

started
stopped
action_success
waiting_for_simulator
ready
complete

0 25000 50000 75000 100000 125000 150000 175000
Time (seconds)

node_25_pose_sender
node_25_spawn_model_96
node_25_spawn_model_99
node_25_spawn_model_98
node_25_spawn_model_97
node_25_px4_instance_98
node_25_px4_instance_99
node_25_px4_instance_97
node_25_px4_instance_96

node_25_gazebo_server
node_25_copy_ports_config

node_25_chmod_port_config
node_25_reserve_port
node_24_pose_sender

node_24_spawn_model_94
node_24_spawn_model_93
node_24_spawn_model_95
node_24_spawn_model_92
node_24_px4_instance_94
node_24_px4_instance_92
node_24_px4_instance_95
node_24_px4_instance_93

node_24_gazebo_server
node_24_copy_ports_config

node_24_chmod_port_config
node_24_reserve_port
node_23_pose_sender

node_23_spawn_model_88
node_23_spawn_model_89
node_23_spawn_model_90
node_23_spawn_model_91
node_23_px4_instance_91
node_23_px4_instance_89
node_23_px4_instance_88
node_23_px4_instance_90

node_23_copy_ports_config
node_23_gazebo_server

node_23_chmod_port_config
node_23_reserve_port
node_22_pose_sender

node_22_spawn_model_87
node_22_spawn_model_85
node_22_spawn_model_86
node_22_spawn_model_84
node_22_px4_instance_86
node_22_px4_instance_85
node_22_px4_instance_87
node_22_px4_instance_84

node_22_gazebo_server
node_22_copy_ports_config

node_22_chmod_port_config
node_22_reserve_port
node_21_pose_sender

node_21_spawn_model_81
node_21_spawn_model_83
node_21_spawn_model_80
node_21_spawn_model_82
node_21_px4_instance_83
node_21_px4_instance_81
node_21_px4_instance_80
node_21_px4_instance_82

node_21_gazebo_server
node_21_copy_ports_config

node_21_chmod_port_config
node_21_reserve_port
node_20_pose_sender

node_20_spawn_model_77
node_20_spawn_model_76
node_20_spawn_model_78
node_20_spawn_model_79
node_20_px4_instance_79
node_20_px4_instance_78
node_20_px4_instance_76
node_20_px4_instance_77

node_20_copy_ports_config
node_20_gazebo_server

node_20_chmod_port_config
node_20_reserve_port
node_19_pose_sender

node_19_spawn_model_75
node_19_spawn_model_74
node_19_spawn_model_72
node_19_spawn_model_73
node_19_px4_instance_74
node_19_px4_instance_75
node_19_px4_instance_72
node_19_px4_instance_73

node_19_gazebo_server
node_19_copy_ports_config

node_19_chmod_port_config
node_19_reserve_port
node_18_pose_sender

node_18_spawn_model_70
node_18_spawn_model_69
node_18_spawn_model_68
node_18_spawn_model_71
node_18_px4_instance_69
node_18_px4_instance_70
node_18_px4_instance_68
node_18_px4_instance_71

node_18_copy_ports_config
node_18_gazebo_server

node_18_chmod_port_config
node_18_reserve_port
node_17_pose_sender

node_17_spawn_model_67
node_17_spawn_model_65
node_17_spawn_model_66
node_17_spawn_model_64
node_17_px4_instance_66
node_17_px4_instance_65
node_17_px4_instance_64
node_17_px4_instance_67

node_17_copy_ports_config
node_17_gazebo_server

node_17_chmod_port_config
node_17_reserve_port
node_16_pose_sender

node_16_spawn_model_60
node_16_spawn_model_61
node_16_spawn_model_62
node_16_spawn_model_63
node_16_px4_instance_62
node_16_px4_instance_63
node_16_px4_instance_61
node_16_px4_instance_60

node_16_gazebo_server
node_16_copy_ports_config

node_16_chmod_port_config
node_16_reserve_port
node_15_pose_sender

node_15_spawn_model_56
node_15_spawn_model_59
node_15_spawn_model_57
node_15_spawn_model_58
node_15_px4_instance_56
node_15_px4_instance_57
node_15_px4_instance_58
node_15_px4_instance_59

node_15_gazebo_server
node_15_copy_ports_config

node_15_chmod_port_config
node_15_reserve_port
node_14_pose_sender

node_14_spawn_model_53
node_14_spawn_model_55
node_14_spawn_model_54
node_14_spawn_model_52
node_14_px4_instance_55
node_14_px4_instance_54
node_14_px4_instance_52
node_14_px4_instance_53

node_14_copy_ports_config
node_14_gazebo_server

node_14_chmod_port_config
node_14_reserve_port
node_13_pose_sender

node_13_spawn_model_50
node_13_spawn_model_51
node_13_spawn_model_49
node_13_spawn_model_48
node_13_px4_instance_50
node_13_px4_instance_49
node_13_px4_instance_48
node_13_px4_instance_51

node_13_copy_ports_config
node_13_gazebo_server

node_13_chmod_port_config
node_13_reserve_port
node_12_pose_sender

node_12_spawn_model_44
node_12_spawn_model_47
node_12_spawn_model_45
node_12_spawn_model_46
node_12_px4_instance_44
node_12_px4_instance_45
node_12_px4_instance_46
node_12_px4_instance_47

node_12_copy_ports_config
node_12_gazebo_server

node_12_chmod_port_config
node_12_reserve_port
node_11_pose_sender

node_11_spawn_model_41
node_11_spawn_model_42
node_11_spawn_model_43
node_11_spawn_model_40
node_11_px4_instance_43
node_11_px4_instance_41
node_11_px4_instance_42
node_11_px4_instance_40

node_11_copy_ports_config
node_11_gazebo_server

node_11_chmod_port_config
node_11_reserve_port
node_10_pose_sender

node_10_spawn_model_37
node_10_spawn_model_36
node_10_spawn_model_39
node_10_spawn_model_38
node_10_px4_instance_38
node_10_px4_instance_37
node_10_px4_instance_39
node_10_px4_instance_36

node_10_copy_ports_config
node_10_gazebo_server

node_10_chmod_port_config
node_10_reserve_port
node_9_pose_sender

node_9_spawn_model_35
node_9_spawn_model_33
node_9_spawn_model_34
node_9_spawn_model_32
node_9_px4_instance_32
node_9_px4_instance_33
node_9_px4_instance_34
node_9_px4_instance_35

node_9_copy_ports_config
node_9_gazebo_server

node_9_chmod_port_config
node_9_reserve_port
node_8_pose_sender

node_8_spawn_model_29
node_8_spawn_model_30
node_8_spawn_model_31
node_8_spawn_model_28
node_8_px4_instance_31
node_8_px4_instance_29
node_8_px4_instance_30
node_8_px4_instance_28

node_8_gazebo_server
node_8_copy_ports_config

node_8_chmod_port_config
node_8_reserve_port
node_7_pose_sender

node_7_spawn_model_26
node_7_spawn_model_25
node_7_spawn_model_27
node_7_spawn_model_24
node_7_px4_instance_24
node_7_px4_instance_27
node_7_px4_instance_25
node_7_px4_instance_26

node_7_copy_ports_config
node_7_gazebo_server

node_7_chmod_port_config
node_7_reserve_port
node_6_pose_sender

node_6_spawn_model_20
node_6_spawn_model_22
node_6_spawn_model_21
node_6_spawn_model_23
node_6_px4_instance_20
node_6_px4_instance_22
node_6_px4_instance_23
node_6_px4_instance_21

node_6_copy_ports_config
node_6_gazebo_server

node_6_chmod_port_config
node_6_reserve_port
node_5_pose_sender

node_5_spawn_model_17
node_5_spawn_model_16
node_5_spawn_model_19
node_5_spawn_model_18
node_5_px4_instance_18
node_5_px4_instance_16
node_5_px4_instance_17
node_5_px4_instance_19

node_5_copy_ports_config
node_5_gazebo_server

node_5_chmod_port_config
node_5_reserve_port
node_4_pose_sender

node_4_spawn_model_14
node_4_spawn_model_12
node_4_spawn_model_13
node_4_spawn_model_15
node_4_px4_instance_13
node_4_px4_instance_12
node_4_px4_instance_15
node_4_px4_instance_14

node_4_copy_ports_config
node_4_gazebo_server

node_4_chmod_port_config
node_4_reserve_port
node_3_pose_sender

node_3_spawn_model_9
node_3_spawn_model_11
node_3_spawn_model_10
node_3_spawn_model_8
node_3_px4_instance_9

node_3_px4_instance_11
node_3_px4_instance_8

node_3_px4_instance_10
node_3_copy_ports_config

node_3_gazebo_server
node_3_chmod_port_config

node_3_reserve_port
node_2_pose_sender

node_2_spawn_model_6
node_2_spawn_model_4
node_2_spawn_model_5
node_2_spawn_model_7
node_2_px4_instance_7
node_2_px4_instance_4
node_2_px4_instance_6
node_2_px4_instance_5
node_2_gazebo_server

node_2_copy_ports_config
node_2_chmod_port_config

node_2_reserve_port
node_1_pose_sender

node_1_spawn_model_2
node_1_spawn_model_3
node_1_spawn_model_0
node_1_spawn_model_1
node_1_px4_instance_1
node_1_px4_instance_2
node_1_px4_instance_3
node_1_px4_instance_0
node_1_gazebo_server

node_1_copy_ports_config
node_1_chmod_port_config

node_1_reserve_port

started
stopped
action_success
waiting_for_simulator
ready
complete

Fig. 14: Timeline of 100 Drone Run
Left: Full timeline of complete workflow with 25 Shepherds
running 4 simulated drones each. Right: Detail view of 4

Shepherd nodes.

VI. RELATED WORK

a) Workflow Management: Several workflow managers
have been developed to orchestrate complex computational
pipelines. Apache Airflow [7], for instance, provides a plat-
form for creating, scheduling, and monitoring workflows as
directed acyclic graphs (DAGs). Nextflow [4], another popular
choice, excels at executing data-intensive pipelines across
diverse computing environments. Tools like Snakemake [10],
[11] and Makeflow [12], inspired by the Unix make utility,
offer a declarative approach to workflow definition. While
these systems effectively manage task-based workflows, they
focus on task completion and data movement or transformation
as triggers for subsequent steps, and are not designed for
orchestrating persistent services with dynamic state dependen-
cies. Workflow description schemes like CWL [13] and YAWL

[14] are powerful, but Shepherd’s YAML-based configuration
is simpler and more human-readable, ideal for flexible and
rapid deployment.

Shepherd complements these workflow managers by intro-
ducing a novel approach to service orchestration. By mon-
itoring service states through log analysis and file creation,
Shepherd enables seamless integration of persistent services
into existing workflow paradigms.

b) Service Orchestration: Docker Compose allows con-
trol over the order of service startup and shutdown, but
it doesn’t wait for a container to be ’ready’—only that
it’s running [15]. Shepherd allows users to control startup
through log monitoring, enabling service startup to depend
on readiness and other internal states. Docker Swarm ensures
high availability with service replication and load balancing
[16], [17], while Kubernetes offers advanced features like
automated rollouts, self-healing, and detailed monitoring [18],
[19]. Shepherd complements these tools by providing gran-
ular control over service lifecycles and dependencies on a
single machine. Using log-based state tracking and dynamic
dependency management, Shepherd enables complex service
interactions and workflows, ensuring coordinated execution
and enhanced reliability.

Service management tools like systemd [20] are effective
at starting and maintaining system-level services, managing
basic service dependencies and lifecycles. Shepherd builds
upon this foundation, offering a similar approach tailored
for the execution of services as tasks within a workflow. It
incorporates features like log-based state tracking and dynamic
dependency management. This allows Shepherd to handle
complex service interactions within a workflow, enhancing
flexibility and adaptability.

c) Log Monitoring and Real-Time Analysis: Log anal-
ysis is a powerful tool in software engineering, used for
anomaly detection [21], [22], event extraction [23], [24], per-
formance and security auditing, and many other applications.



This technique helps in identifying patterns, detecting issues,
and gaining insights into system behavior, often in real time
which can be used to trigger other system behavior. Shepherd
employs simple pattern matching to identify dynamic states
in the service execution lifecycle. However, this concept can
be extended by integrating more advanced event matching
algorithms such as SLCT [25] and LogCluster [26], further
enhancing Shepherd’s capabilities.

VII. FUTURE WORK AND CONCLUSIONS

Future work for Shepherd includes extending state tracking
to external sources like database queries or custom script
executions, which would enhance versatility and accommodate
more workflows. Another area for improvement is robust
failure handling. Currently, Shepherd performs a graceful
shutdown of the entire workflow if any task fails. Introducing
mechanisms to restart only the failed task could enhance re-
silience and uptime. These enhancements will involve balanc-
ing additional functionality with system performance, making
Shepherd more powerful for managing complex workflows in
various simulations and real-world applications.

Shepherd provides a robust framework for integrating ser-
vice workflows into traditional task-based workflows. It effec-
tively manages dynamic state dependencies among services
by inferring internal states via log monitoring. This allows
Shepherd to run services as tasks, which can be plugged into
any traditional workflow. Shepherd is especially useful when
a local workflow requires orchestrating complex dependencies
between multiple services and actions that depend on each
other’s dynamic states. This local workflow can then easily
be used as part of a distributed workflow. This approach
has proven valuable in managing complex, large-scale drone
simulations, demonstrating Shepherd’s practical application
and utility in real-world scenarios.

AVAILABILITY

Shepherd is open-source and available at: https://github.
com/cooperative-computing-lab/shepherd

ACKNOWLEDGMENT

This work was supported by NASA grant
80NSSC23M0058, ”A Safety-Aware Ecosystem of
Interconnected and Reputable sUAS”

REFERENCES

[1] B. Sly-Delgado, T. S. Phung, C. Thomas, D. Simonetti, A. Hennessee,
B. Tovar, and D. Thain, “TaskVine: Managing In-Cluster Storage for
High-Throughput Data Intensive Workflows,” in 18th Workshop on
Workflows in Support of Large-Scale Science, 2023.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[3] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock,
“Kepler: An extensible system for design and execution of scientific
workflows,” in Proceedings of the International Conference on Scientific
and Statistical Database Management, SSDBM, vol. 16, 07 2004, pp.
423 – 424.

[4] P. Di Tommaso, M. Chatzou, E. W. Floden, P. P. Barja, E. Palumbo,
and C. Notredame, “Nextflow enables reproducible computational work-
flows,” Nature biotechnology, vol. 35, no. 4, pp. 316–319, 2017.

[5] S. Bowers and B. Ludäscher, “Actor-oriented design of scientific work-
flows,” in International Conference on Conceptual Modeling. Springer,
2005, pp. 369–384.

[6] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao, “Scientific workflow management and the
kepler system,” Concurrency and computation: Practice and experience,
vol. 18, no. 10, pp. 1039–1065, 2006.

[7] A. S. Foundation, “Apache airflow documentation,” https://airflow.
apache.org/docs/apache-airflow/stable/, 2024, accessed: 2024-07-25.

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proceedings of the tenth european conference on computer systems,
2015, pp. 1–17.

[9] S. Project, “Sade: Safety-aware ecosystem of interconnected and rep-
utable suas,” https://sites.nd.edu/uli-drone-reputations/, 2024, accessed:
September 16, 2024.

[10] J. Köster and S. Rahmann, “Snakemake—a scalable bioinformatics
workflow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012.

[11] F. Mölder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-
Tinch, V. Sochat, J. Forster, S. Lee, S. O. Twardziok, A. Kanitz et al.,
“Sustainable data analysis with snakemake,” F1000Research, vol. 10,
2021.

[12] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A portable
abstraction for data intensive computing on clusters, clouds, and grids,”
in Proceedings of the 1st ACM SIGMOD Workshop on Scalable
Workflow Execution Engines and Technologies, ser. SWEET ’12. New
York, NY, USA: Association for Computing Machinery, 2012. [Online].
Available: https://doi.org/10.1145/2443416.2443417

[13] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich et al., “Common
workflow language, v1. 0,” 2016.

[14] W. M. Van Der Aalst and A. H. Ter Hofstede, “Yawl: yet another
workflow language,” Information systems, vol. 30, no. 4, pp. 245–275,
2005.

[15] Docker, Inc., “Docker compose,” https://docs.docker.com/compose/,
2024, accessed: 2024.

[16] D. Merkel et al., “Docker: lightweight linux containers for consistent
development and deployment,” Linux j, vol. 239, no. 2, p. 2, 2014.

[17] Docker, “Docker swarm,” Online; accessed on [date], 2014. [Online].
Available: https://docs.docker.com/engine/swarm/

[18] C. N. C. Foundation, “Kubernetes,” Online; accessed on [2024-07-23],
2014. [Online]. Available: https://kubernetes.io/docs/

[19] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Communications of the ACM, vol. 59, no. 5,
pp. 50–57, 2016.

[20] L. Poettering, K. Sievers et al., “systemd,” 2010. [Online]. Available:
https://www.freedesktop.org/wiki/Software/systemd/

[21] A. Vervaet, “Monilog: An automated log-based anomaly detection
system for cloud computing infrastructures,” in 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE). IEEE, 2021, pp.
2739–2743.

[22] W. Xiong, W. Chen, J. Liu, and K. Zhao, “An anomaly detection
framework for system logs based on ensemble learning,” in Pacific Rim
International Conference on Artificial Intelligence. Springer, 2023, pp.
52–65.

[23] N. Algiriyage, R. Prasanna, K. Stock, E. E. Doyle, and D. Johnston,
“Dees: a real-time system for event extraction from disaster-related web
text,” Social Network Analysis and Mining, vol. 13, no. 1, p. 6, 2022.

[24] R. Yang, D. Qu, Y. Qian, Y. Dai, and S. Zhu, “An online log template
extraction method based on hierarchical clustering,” EURASIP Journal
on Wireless Communications and Networking, vol. 2019, no. 1, p. 135,
2019.

[25] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM 2003)(IEEE Cat. No. 03EX764). Ieee, 2003, pp.
119–126.

[26] A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar, P. Donnelly,
P. Ivie, K. H. Anampa, P. Brenner, D. Thain, K. Lannon, and M. Hildreth,
“Scaling Data Intensive Physics Applications to 10k Cores on Non-
Dedicated Clusters with Lobster,” in IEEE Conference on Cluster
Computing, 2015.

https://github.com/cooperative-computing-lab/shepherd
https://github.com/cooperative-computing-lab/shepherd
https://airflow.apache.org/docs/apache-airflow/stable/
https://airflow.apache.org/docs/apache-airflow/stable/
https://sites.nd.edu/uli-drone-reputations/
https://doi.org/10.1145/2443416.2443417
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/docs/
https://www.freedesktop.org/wiki/Software/systemd/

	Introduction
	Service Workflows
	Architecture of Shepherd
	Overview
	Components
	Actions vs. Services
	Task State Machine
	Configuration Language

	Application in Large-Scale Drone Simulation: The SADE Project
	From Workflow of Services to Workflows of Discrete Tasks
	Configurations for Drone Simulation
	Logs and Visualization
	How Shepherd Helps

	Application in Integration Test
	Related Work
	Future Work and Conclusions
	References

